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Abstract. We consider the set of monic irreducible polynomials P over a
finite field Fq such that the multiplicative order modulo P of some a in Fq(T )

is divisible by a fixed positive integer d. Call Rq(a, d) this set. We show the
existence or non-existence of the density of Rq(a, d) for three distinct notions
of density. In particular, the sets Rq(a, d) have a Dirichlet density. Under
some assumptions, we prove simple formulas for the density values.
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1. Introduction

Let a ∈ Q \ {0,±1} and d be a positive integer. The proportion of rational
prime numbers p such that d divides the multiplicative order of a modulo p has
been widely studied. It was originally considered by Hasse [6, 7] in 1965 and 1966,
with a a square-free integer and d a prime number, in order to find the natural
density of the set of primes dividing the sequence (1 + an + · · · + a(d−1)n)n≥0 at
some n ≥ 0. The problem was completely solved when Wiertelak [16] proved the
following theorem:

Theorem 1. Let Na(d) be the set of prime numbers p such that d divides the
multiplicative order of a modulo p and Na(d;x) = Na(d) ∩ [1, x]. Then

Na(d;x) = δa(d)Li(x) +Od,a

(
x(log log x)ω(d)+1

(log x)3

)
,

2020 Mathematics Subject Classification. 11R44, 11T06, 11N37, 11R58.
Key words and phrases. Chebotarev density theorem, Dirichlet density, Kummer extension,

finite field, global function field, monic irreducible polynomial, multiplicative order.
1



2 JOAQUIM CERA DA CONCEIÇÃO

where the implied constant depends on d and a, Li is the logarithmic integral func-
tion, ω is the number of distinct-prime-divisor function, and δa(d) ∈ [0, 1] is the
natural density of Na(d).

Moreover, Wiertelak gave a formula for δa(d) that shows that δa(d) ∈ Q>0. More
recently, Pappalardi [12] took a different approach to this problem and obtained
another equivalent formula for the density. It was given in a more compact form by
Moree [10], using a similar method. Note that in some cases, the set Na(d) is also
related to sets of prime divisors of some linear integral sequences. See [1, Chapter
3] for the definition of such sequences and the computation of some of the densities.

There is an analogy between Z and the ring of polynomials A = Fq[T ] with
positive characteristic p. Both are euclidean rings in which prime numbers and
monic irreducible polynomials are prime elements. The analogue of Q is the fraction
field of A, that is, K = Fq(T ). With the above problem in mind, it is natural to ask
whether a similar investigation can be conducted for monic irreducible polynomials
in A. This is the object of our paper. Let a ∈ K× and d be a positive integer. We
define Rq(a, d) to be the set of primes P ∈ A such that the multiplicative order of
a in the group (A/P )× is divisible by d. To our knowledge, the only instance of
study of these sets are recent papers of Ballot [2, 3] in which the case a = T and d a
prime number is treated with elementary methods. To determine the proportion of
such primes, we use prime densities on A. Let S ⊂ A be a set of monic irreducible
polynomials and S(N) be the number of P ∈ S with polynomial degree N ≥ 1.
The most common densities are the d1 and δ densities defined, when they exists,
by the limits

d1(S) = lim
N→+∞

S(N)

P+(N)
and δ(S) = lim

s→1+

∑
P∈S NP

−s∑
P∈P+

NP−s
.

The letter P+ denotes the set of monic irreducible polynomials in A and NP =

qdeg(P ) is the norm of P . The quantity P+(N) is usually denoted IN and is given
by the sum

IN =
1

N

∑
d|N

µ(d)qN/d.

The number δ(S) is called the Dirichlet density of S and is the analogue of the
Dirichlet density used for rational prime numbers. However, in a discussion about
prime densities on A, Ballot [4] defines five densities d1, d2, d3, d4 and δ, and con-
cludes two things. Denoting by δ1 =⇒ δ2 the fact that any set of primes in A
having a δ1-density equal to d must have a δ2-density equal to d, [4, Theorem A]
states the following:

d1 ⇐⇒ d2 =⇒ d3 =⇒ d4 ⇐⇒ δ.

Moreover, d3 is not equivalent to d2, nor d4. In conclusion, there are three distinct
densities to be considered. In this paper, we consider d1, δ and the d3-density
defined by the limit

d3(S) = lim
N→+∞

1

N

N∑
n=1

S(n)

In
= lim

N→+∞

1

N

N∑
n=1

S(n)

qn/n
,

when it exists. Note that the second equality comes from the well-known equiva-
lence In ∼ qn/n as n tends to infinity. Secondly, although there is some evidence
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of d1 being an analogue of the natural density commonly used on N, Ballot con-
cludes that d3 seems to be a better candidate. Indeed, various sets of rational prime
numbers that are known to have natural density have analogues in A that do not
have d1-density but have d3-density. In this work, we prove that the set Rq(a, d)
does not usually have d1-density, but always has d3-density, thus confirming d3 as
a strong analogue of the natural density. Our work is based on the method used by
Pappalardi [12] and Moree [10], and on the elementary approach taken by Ballot
[2, 3].

In Section 2, we give definitions and results related to function fields that make
up our main toolbox. An important tool is an analogue of the Chebotarev Density
Theorem for global function fields. Another gives necessary and sufficient conditions
for primes in a global function fieldK to completely split in a Galois extension L/K.

The idea is to describe Rq(a, d) as a union of sets of primes that completely
split in Kummer extensions of K = Fq(T ), i.e., fields of the form K(ζn, a

1/d),
where d, n are positive integers such that (n, p) = 1 and d | n, ζn ∈ F̄q is a
primitive n-th root of unity and a ∈ K×. From this and the above-mentioned
analogue of Chebotarev’s Density Theorem, we obtain an asymptotic formula for
Rq(a, d,N) := Rq(a, d)(N) that involves degrees of Kummer extensions. Therefore,
to make our formula simpler and to later compute a closed-form formula for the
density, we need to determine the degree of Kummer extensions of K. In Section
3, we study the form an element a ∈ K× may take when K(a1/n)/K is a constant
field extension, i.e., an extension of Fq. These results are our primary tools for
computing degrees of Kummer extensions in Section 4.

In Section 5, we show that Rq(a, d,N) may be expressed in terms of the car-
dinality of sets of primes that completely split in some Kummer extensions of K.
Applying the analogue of the Chebotarev Density Theorem, we find an asymptotic
formula for Rq(a, d,N) of the form

|Rq(a, d,N)− δq(a, d,N) · qN/N | ≪ f(N),

for some function f and where δq(a, d,N) is called the proportion-density of the
quantity Rq(a, d,N). (See Theorem 7.) We obtain a formula for δq(a, d,N) that
involves degrees of Kummer extensions of K.

Section 6 is dedicated to preliminary results for the proofs of the main theorems.
We prove a formula for the multiplicative order of an integer, and another for
integers of the form qn − 1, where n, q are integers. Moreover, we give a property
of the degree of constant fields of some special Kummer extensions.

Our main results, Theorem 8 and Theorem 9, on the existence or non-existence of
the d1 and d3-densities of Rq(a, d) are proved in Section 7. The asymptotic formula
given in Theorem 9 revolves around a technique used by Ballot that consists of
partitioning N into adequate disjoint arithmetic progressions. For all n ≥ 1 that
belong in the same arithmetic progression, we find that δq(a, d, n) is a constant
independent of n, thus simplifying most calculations.

Under some assumption on the degree of constant fields of some Kummer ex-
tensions, we prove in Section 8 that d3(Rq(a, d)) can be written in a closed-form
formula. (See Theorem 10.) We end our paper by giving sufficient conditions for
this assumption to hold.

Throughout this paper, the letters l and p denote prime numbers, the letter q
denotes a power of p, and the letters d, n and N denote positive integers with d | n
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and p ∤ n. Given an integer d, we let d∞ denote the supernatural number

d∞ =
∏
l|d

l∞.

This notation allows us to consider positive divisors v of d∞, i.e., v | dt for some
t ≥ 1, and to use notation such as

(k, d∞) =
∏
l|d

kvl(k),

where (a, b) denotes the gcd of a and b, and vl denotes l-adic valuation. Note that
k 7→ (k, d∞) is completely multiplicative, while k 7→ (k, d) is only multiplicative.
We write [a, b] for the lcm of two integers a and b. Given a field F , we denote by
(F×)k the set of k-th powers in F and by F̄ its algebraic closure. We write ω, τ ,
µ, φ and ψ to denote the number of distinct prime factors function, the number of
divisors function, the Möbius function, Euler’s totient function and Dedekind psi
function, respectively. For a multiplicative group G and g ∈ G, we let ordG(g) and
indG(g) denote respectively the order and the index of g. Particular cases include
the multiplicative group G = (Z/nZ)×, for which we use the notation ordn(g) and
indn(g), and G = (Fq[T ]/(P ))

×, with the notation ordP (g) and indP (g), where
n ≥ 1 and P ∈ Fq[T ]. We let the letters K and A denote respectively the rational
function field Fq(T ) and its integer ring Fq[T ]. For f ∈ A non-zero, we let f̃ denote
the monic part of f , that is, the unique monic polynomial in A such that f = uf̃
for some u ∈ F×

q .

2. Known results

We use this section to state two important results for our work. The first theorem
is a special case of a theorem that takes various forms in literature. It is usually
referred to as the Chebotarev Density Theorem for global function fields. (See [5,
Proposition 6.4.8] or, for the curve point of view, [11, Theorem 1].) It gives a
bound on the number of primes in K of a fixed degree satisfying a certain property.
Since there are finitely many primes of degree N , the name “density” is not the
most accurate. We use the term proportion-density instead to refer to the “density”
number described in the theorem. Throughout this paper, we denote by gL the
genus of a field L and by P+ the set of monic irreducible polynomials in A.

Theorem 2. Let L/K be a Galois extension of global function fields and Fqn be
the constant field of L. Put m := [L : FqnK] and

π(N) := #{P ∈ P+ : deg(P ) = N and P splits completely in L}.

Then π(N) = 0 if n ∤ N , and otherwise, we have∣∣∣∣π(N)− qN

Nm

∣∣∣∣ ≤ 2

Nm

(
(m+ gL)q

N/2 +mqN/4 + gL +m

)
.

Proof. It is a special case of [5, Proposition 6.4.8]. □

The second result gives necessary and sufficient conditions for a prime to split
completely in some Kummer extensions of K.
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Theorem 3. Let n ≥ 1 be an integer with p ∤ n and a ∈ K×. A prime P in A that
satisfy vP (a) = 0 splits completely in K(ζn, a

1/d) if and only if the following holds:

NP ≡ 1 (mod n) and a
NP−1

d ≡ 1 (mod P ).

Proof. It suffices to follow the proof of [13, Proposition 10.6]. □

3. On constant field extensions

LetM/L be an algebraic extension of function fields. We say thatM is a constant
field extension of L if M = (M ∩ F̄q)L. Similarly, we say that M is a geometric
extension of L if M ̸= L and M ∩ F̄q = L ∩ F̄q. Note that it is likely that M/L is
neither a geometric nor a constant field extension, but in that case we can always
split it in two such extensions. In this section, we give necessary and sufficient
conditions for an algebraic extension K(a1/n)/K to be a constant field extension,
where a ∈ K×.

Lemma 1. Let a ∈ K× and l ̸= p be a prime. Then, K(a1/l)/K is a constant field
extension if and only if a = µbl for some b ∈ K× and µ ∈ F×

q .

Proof. By [8, Lemma 3.3], we have K(a1/l)/K non-geometric if and only if a = µbl

for some b ∈ K× and µ ∈ F×
q . Since l is a prime, any non-geometric extension is a

constant field extension. □

Theorem 4. Let a ∈ K×. Then, K(a1/n)/K is a constant field extension if and
only if a = µbn for some b ∈ K× and µ ∈ F×

q .

Proof. If a = µbn, then the result follows directly. For the converse, we start with
the case a ∈ A. First assume that the result holds for prime powers and write
n = q1 · · · qs, where the qi’s are powers of distinct primes and s ≥ 2. We have

a = µ1b
q1
1 = · · · = µsb

qs
s and ã = b̃q11 = · · · = b̃qss ,

for some non-zero bi ∈ A and µi ∈ F×
q . Since the qi’s are powers of distinct primes,

we obtain

b̃1 ∈
s⋂

i=2

(K×)qi ,

thus ã = bn for some non-zero b ∈ A, and a = µã = µbn. Hence it suffices to prove
the result for prime powers. Let l be a prime number and k ≥ 1. We proceed
by induction on k ≥ 1 to show the statement holds for all n = lk. The base case
follows from Lemma 1. Assume the statement holds for some k ≥ 1 and that
K(a1/l

k+1

)/K is a constant field extension. In particular, K(a1/l)/K a constant
field extension and we may write a = µbl using Lemma 1. Let x be an lk+1-th root
of a in L := K(a1/l

k+1

). Then

ã = b̃l = x̃l
k+1

,

and we obtain b̃ = ζlx̃
lk for some l-th root of unity ζl. Since b̃ and x̃ are both

monic polynomials in the ring of integers of L, we find that ζl = 1. Because
x̃ ∈ L, we find that K(b̃1/l

k

) is a subfield of L, thus K(b̃1/l
k

)/K is a constant field
extension. By the induction hypothesis, we have b̃ = λcl

k

= c̃l
k

for some λ ∈ F×
q

and c ∈ K×. Hence ã = b̃l = c̃l
k+1

and a = µc̃l
k+1

, where µ ∈ F×
q is the leading

coefficient of a. We successfully proved the result for a ∈ A. If a = f/g ∈ K×, then
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K(a1/n) = K((fgn−1)1/n) and by the above, fgn−1 is of the form µbn. Hence we
have a = µ(b/g)n. □

4. The degree of Kummer extensions of rational function fields

We extend the notation ã to rational functions a = f/g ∈ K× by ã = f̃/g̃. We
denote by λ ∈ F×

q the unique constant such that a = λã. Let h denote the largest
integer t ≥ 1 such that ã ∈ (K×)t. In this section, we study Kummer extensions
of K = Fq(T ), that is, fields of the form K(ζn, a

1/d), where ζn ∈ F̄q is a primitive
n-th root of unity and a ∈ K×. We find formulas for the following field degrees:

[K(ζn, a
1/d) : Fn,dK] and [Fn,d : Fq],

where Fn,d denotes the constant field of K(ζn, a
1/d). The key result we use is the

following theorem on polynomials of the form Xn − a:

Theorem 5. Let K be a field and a ∈ K×. Then Xn − a is irreducible over K if
and only if a ̸∈ (K×)l for all l | n and a ̸∈ −4(K×)4 if 4 | n.

Proof. See [9, Theorem 9.1]. □

Lemma 2. Let µ ∈ F×
q . We have

[Fq(ζn, µ
1/d) : Fq] =

ordn(q)d

(indFq(ζn)×(µ), d)
.

Proof. It is known that [Fq(ζn) : Fq] = ordn(q). Let u = indFq(ζn)×(µ) be the index
of µ in Fq(ζn), that is, the greatest positive divisor t | qordn(q) − 1 such that µ = xt

for some x ∈ Fq(ζn)
×. We have

Fq(ζn, µ
1/d) = Fq(ζn, v

1/d0),

where d0 = d/(d, u) and v(u,d) = µ. We claim that d0 is the degree of the extension
Fq(ζn, µ

1/d)/Fq(ζn). Indeed, let us show that Xd0 − v is irreducible over Fq(ζn)

using Theorem 5. Let l | d0 be a prime. By contradiction, if we have v = cl for
some c ∈ Fq(ζn), then

xu = µ = v(u,d) = cl(u,d).

Because d0 | qordn(q) − 1 and by the maximality of u, we must have l(u, d) | u.
This yields a contradiction since l | d0. Now, if 4 | d0, assume by contradiction
that v = −4y4 for some y ∈ Fq(ζn). Then, since v is not a square in Fq(ζn) by the
above, we find that −1 is not a square in Fq(ζn). Hence 4 ∤ qordn(q) − 1, but 4 | d0
and d0 | n imply that 4 | qordn(q) − 1. We find a contradiction. By Theorem 5, the
polynomial Xd0 − v is irreducible over Fq(ζn) and the result follows. □

Lemma 3. Let a ∈ K×. Then the greatest divisor v of d such that the extension
K(ζn, a

1/v)/K is a constant field extension is equal to (d, h). In particular, the
constant field Fn,d of Kn,d is equal to Fq(ζn, λ

1/(d,h)).

Proof. We search for the maximal subfield M of K(ζn, a
1/d) such that M/K is a

constant field extension. We claim that M = K(ζn, a
1/D), with D = (d, h). Let us

first show it is indeed a constant field extension of K. Write h = Dk and ã = b̃Dk

for some k ≥ 1 and b̃ ∈ K×. We have

K(ζn, a
1/D) = K(ζn, λ

1/D b̃k) = K(ζn, λ
1/D) = Fq(ζn, λ

1/D)K,
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and we obtain a constant field extension of K. Next, we prove that D is maxi-
mal. By contradiction, assume there exists a prime l such that lD | d and that
K(ζn, a

1/lD) is a constant field extension of K. Then, K(a1/lD)/K is a constant
field extension and, by Theorem 4, there exists ω, λ ∈ F×

q and c ∈ K× such that

a = ωclD = λc̃lD.

Hence ã = c̃lD and, by maximality of h, we find that lD | h. We obtain

l |
(

d

(d, h)
,

h

(d, h)

)
= 1,

which is a contradiction. Therefore, D is the maximal divisor v | d such that
K(ζn, a

1/v)/K is a constant field extension and Fn,d = Fq(ζn, λ
1/(d,h)). □

Theorem 6. Let a ∈ K×. We have

[K(ζn, a
1/d) : Fn,dK] =

d

(d, h)
.

Proof. Put d0 = d/(d, h) and write a = bD, where D = (d, h) and b ∈ Fn,dK
×.

The latter is possible since a = λc̃D for some c ∈ K×, by Lemma 3 and Theorem
4. Thus a = (µc̃)D with µ ∈ Fn,d and µD = λ. Using Theorem 5, we show that the
polynomial Xd0 − b is irreducible over Fn,dK

×. Let l | d0 be a prime and assume
by contradiction that b = xl for some x ∈ Fn,dK

×. Since Fn,dK is a rational
function field and because a ∈ A, we find that x ∈ Fn,d[T ]. Then λ = xlD0 , where
x0 ∈ Fn,d is the leading coefficient of x. But, by Lemma 3, D is the greatest positive
integer t | d such that λ is a t-th power in F×

n,d. Hence we have a contradiction
and b ̸∈ (Fn,dK

×)l. Now, if 4 | d0, then assume by contradiction that b = −4x4

for some x ∈ Fn,dK
×. By the above, b is not a square in Fn,dK, thus −1 is not a

square in Fn,dK. This yields that 4 ∤ #F×
n,d. But 4 | d0 and d0 | #F×

n,d, we have a
contradiction. Hence b ̸= −4x4 and Xd0 −b is irreducible over Fn,dK

× by Theorem
5. □

Corollary 1. Let a ∈ K×. We have

[K(ζn, a
1/d) : K] =

ordn(q)d

(indFq(ζn)×(λ), d, h)
.

Proof. Using [13, Proposition 8.1], we have

[K(ζn, a
1/d) : K] = [K(ζn, a

1/d) : Fn,dK][Fn,dK : K]

= [K(ζn, a
1/d) : Fn,dK][Fn,d : Fq].

Then, it suffices to use the results of Lemmas 2 and 3, and Theorem 6. □

5. The proportion-density

Throughout the rest of this paper, we denote by Rq(a, d) the set

Rq(a, d) := {P ∈ P+ : vP (a) = 0 and d | ordP (a)},

where a ∈ K× and d ≥ 1 are fixed, and P+ is the set of monic irreducible poly-
nomials in A. For each N ≥ 1, we consider Rq(a, d,N) the number of primes in
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Rq(a, d) with degree N . We denote by IN the number of degree N polynomials in
P+. It is well-known that

IN =
1

N

∑
n|N

µ(n)qN/n.

Trivially, for d = 1, we have Rq(a, 1, N) = IN − aN , where aN is the number of
P of degree N such that vP (a) ̸= 0. Note that aN ̸= 0 for only finitely many N .
Moreover, if a = λ ∈ F×

q , then

Rq(λ, d,N) =

{
IN , if d | ordF×

q
(λ);

0, otherwise.

The densities in such particular cases are easily computed. First, the d1-density
of Rq(a, d) is 1, and it follows that the di’s and the Dirichlet densities of Rq(a, 1)
also exist and equal 1. Same goes for Rq(a, λ) for which the densities are 1 or 0,
whether d | ordF×

q
(λ).

We assume that d ≥ 2 and a is not a constant for the rest of this paper. A less
obvious fact is that ordd(q) ∤ N implies Rq(a, d,N) = 0. Indeed, to have d | ordP (a)
we must have d | NP − 1 = qN − 1, that is, ordd(q) | N . Let f := ordd(q). For all
N ≡ 0 (mod f), put

eN (d) = eN :=

(
qN − 1

d
, d∞

)
.

Since K is fixed throughout this paper, we denote by {L} the set of primes in K
that splits completely in L, where L/K is an algebraic extension. For each N ≥ 1,
we let {L}N denote the set of primes in {L} with degree N . We consider the set
P+(a) of primes P ∈ P+ such that vP (a) = 0. We assume throughout the paper
that a = λã and ã = bh, with the notation of the previous section.

Lemma 4. For each positive N ≡ 0 (mod f), we have

Rq(a, d,N) =
∑
v|eN

∑
u|d

µ(u){Kdv,uv}N ,

Proof. Let S(N) be the set of monic irreducible polynomials in Rq(a, d) that have
degree N . A prime P ∈ S(N) satisfies

deg (P ) = N, d | ordP (a) and vP (a) = 0.

Since qN − 1 = ordP (a)indP (a), the condition d | ordP (a) is equivalent to d ·
(indP (a), d

∞) | qN − 1, that is, there exists a unique v | d∞ such that

dv | qN − 1, v | indP (a) and
(
indP (a)

v
, d

)
= 1. (1)

The last condition in (1) is equivalent to lv ∤ indP (a) for all primes l | d. Hence

S(N) =
⊔
v|eN

(
S1,v(N) \

⋃
l|d

Sl,v(N)

)
,

where Su,v(N) = {P ∈ P+(a) : deg (P ) = N, dv | qN − 1 and uv | indP (a)}. By
Theorem 3, we find that the set Su,v(N) is exactly the set {Kdv,uv}N . The result
follows by the inclusion-exclusion principle. □
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Proposition 1. There exists c0 > 0, that only depends on a, such that

gKn,d
≤ c0 · [Kn,d : Fn,dK].

Proof. It suffices to apply [15, Proposition 3.7.3] to Kn,d. □

Lemma 5. For each N ≥ 1 such that [Fn,d : Fq] | N , we have∣∣∣∣{Kn,d}N − qN

N

1

[Kn,d : Fn,dK]

∣∣∣∣ ≤ 2c1 ·
qN/2

N
,

with c1 the absolute constant

c1 =
1
4
√
q
+

(
1 +

1
√
q

)
(c0 + 1),

where c0 is the constant from Proposition 1.

Proof. By Theorem 2, the quantity∣∣∣∣{Kn,d}N − qN

N

1

[Kn,d : Fn,dK]

∣∣∣∣
is bounded above, for all N divisible by [Fn,d : Fq], by

f(N) =
2

Nmn,d

(
(mn,d + gKn,d

)qN/2 +mn,dq
N/4 + gKn,d

+mn,d

)
,

where mn,d = [Kn,d : Fn,dK]. The result follows by the trivial bounds

1

N
≤ 1

√
q

qN/2

N
and

qN/4

N
≤ 1

4
√
q

qN/2

N
,

and the bound given in Proposition 1, where all three hold for N ≥ 1. □

Let P be a proposition. Throughout the rest of the paper, we use the Iverson
symbol defined by [P] = 1 if P is true, and [P] = 0 otherwise. For integers v | d∞
and u | d, we let fu,v = [Fdv,uv : Fq], that is,

fu,v =
orddv(q)(uv, h)

(indFq(ζdv)×(λ), uv, h)
, (2)

by Lemmas 2 and 3.

Theorem 7. For each positive N ≡ 0 (mod f), we have∣∣∣∣Rq(a, d,N)− qN

N
· δq(a, d,N)

∣∣∣∣ ≤ 2ω(d)+1c1 ·
τ(eN )qN/2

N
,

where c1 is the absolute constant defined in Lemma 5 and δq(a, d,N) is defined by

δq(a, d,N) =
∑
v|eN

∑
u|d

µ(u)[fu,v | N ]

[Kdv,uv : Fdv,uvK]
.

Proof. Let Sq(a, d,N) be the difference

Sq(a, d,N) = Rq(a, d,N)− qN

N
· δq(a, d,N).
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By Lemmas 4 and 5, we have

|Sq(a, d,N)| =
∣∣∣∣ ∑
v|eN

∑
u|d

µ(u)

(
{Kdv,uv}N − qN

N

[fu,v | N ]

[Kdv,uv : Fdv,uvK]

)∣∣∣∣
≤ 2c1 ·

qN/2

N

∑
v|eN

∑
u|d

|µ(u)|

= 2c1 ·
τ(eN )qN/2

N
·
∏
l|d

(1 + 1)

= 2ω(d)+1c1 ·
τ(eN )qN/2

N
,

the sought result. □

6. More preliminary results

We show in this section three preliminary results to the study of the d1 and
d3-densities of Rq(a, d). Our first result gives basic arithmetic properties of certain
numbers of the form (qN − 1, d∞). As a consequence, we prove a formula for
orddv(q) that generalizes a well-known formula for ordlk(q), with k ≥ 1. Finally,
we prove that, under the hypothesis f1,v | N , the Iverson symbol [fu,v | N ] defines
a multiplicative function in the variable u. We use the letter P to denote the
proposition

P : 2∥d, q ≡ 3 (mod 4) and 2 ∤ f.
The following lemma is enough to see that interesting things might happen when
P is true:

Lemma 6. Let m,n, q ≥ 1 be integers with (d, q) = 1 and d | qm − 1. Then

(qmn − 1, d∞) = (qm − 1, d∞)(n, d∞) ·

{
2v2(q

m+1)−1, if [P] = 1 and 2 | n;
1, otherwise.

Proof. The map d 7→ (k, d∞), where k is a fixed integer, defines a completely
multiplicative function. We obtain the product formula

(qmn − 1, d∞) =
∏
l|d

(qmn − 1, l∞). (3)

Therefore, it is enough to prove the result for all primes l | d. By [3, Lemma 4],
and by replacing ordl(q) by m in the proof, which is allowed since it only uses that
l | qm − 1, we obtain

vl(q
mn − 1) = vl(q

m − 1) + vl(n),

for all l ≥ 3 and n ≥ 1, thus (qmn − 1, l∞) = (qm − 1, l∞)(n, l∞). For l = 2, so in
particular 2 | d, we have

v2

(
qmn − 1

qm − 1

)
= v2(n) +

{
v2(q

m + 1)− 1, if 2 | n;
0, otherwise,

by [2, Proposition 2.4] and replacing q by qm in the proof. We find

(qmn − 1, 2∞) = (qm − 1, 2∞)(n, 2∞) ·

{
2v2(q

m+1)−1 if 2 | n;
1, otherwise.
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The result follows by applying the formulas we obtained to (3) and noting that if
P is false, then v2(qm + 1) = 1. □

Lemma 7. Let q ≥ 1 be an integer prime to d and f = ordd(q). Then, for all
v | d∞, we have

orddv(q) = fdv ·


2

(q2f − 1, dv)
, if [P] = 1 and 2 | v;

1

(qf − 1, dv)
, otherwise.

Proof. We first assume v2(d) ̸= 1 and put n = dv/(qf − 1, dv). By Lemma 6, we
have

(qfn − 1, d∞) = (qf − 1, d∞)(n, d∞) = (qf − 1, d∞) · dv

(qf − 1, dv)
,

which is a number divisible by dv. If we let t = orddv(q)/f , then n = tm for some
m ≥ 1, and

dv | (qft − 1, d∞) = (qf − 1, d∞) · dv

(qf − 1, dv)(m, d∞)
.

We find that (m, d∞) divides (qf − 1, d∞)/(qf − 1, dv). But

vl

(
(qf − 1, d∞)

(qf − 1, dv)

)
= vl

(
qf − 1

(qf − 1, dv)

)
,

for all l | d. Hence, the coprimality of n and (qf − 1)/(qf − 1, dv) implies that
(m, d∞) must be equal to 1 because (m, d∞) | n. The smallest m ≥ 1 satisfying
this condition is m = 1, thus n = t. Next, assume that 2 ∥ d and note that for any
odd integer n ≥ 1, we have ord2n(q) = ordn(q). Therefore, when 2 ∤ v, we have

orddv(q) = orddv/2(q) =
fdv

2(qf − 1, dv/2)
=

fdv

(qf − 1, dv)
,

by what we proved in the above. When 2 | v, put D = 2d and u = v/2 | D∞ so
that

orddv(q) = ordDu(q) =
ordD(q)dv

(qordD(q) − 1, dv)
,

by the above again. Since 22 ∥D, we have

ordD(q) = [ord4(q), ordd/2(q)] = [ord4(q), f ]

and we conclude using that ord4(q) equals 1 or 2, whether q ≡ 1 (mod 4) or q ≡ 3
(mod 4) respectively. □

Remark 1. As a consequence of Lemma 7, we see that the numbers fu,v are of the
form fu,v = fk, where k | d∞. Indeed, we know that fu,v = orddv(q)k0 for some
k0 | d∞ from (2). It then suffices to use Lemma 7 on the orddv(q) factor. This will
come in handy in following sections.

Lemma 8. Let N ≥ 1 be such that f1,v | N . The function u 7→ [fu,v | N ] is
multiplicative for all v | d∞.
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Proof. Let u1, u2 | d be coprime. We want to show that

[fu1u2,v | N ] = [fu1,v | N ] · [fu2,v | N ],

or equivalently, fu1u2,v = [fu1,v, fu2,v]. Let r = orddv(q) and m = ordF×
q
(λ). We

see that

indFq(ζdv)×(λ) =
qr − 1

ordFq(ζdv)×(λ)
=
qr − 1

m
,

since λ ∈ F×
q . Moreover, we note that

(uv, h) = (v, h)

(
uv

(v, h)
,

h

(v, h)

)
= (u, v)

(
u,

h

(v, h)

)
,

for all u | d. From the above and Lemmas 2 and 3, we obtain

fu,v =
r(uv, h)(

qr−1
m , uv, h

) =
r(v, h)

(v,Hr)
·

(
u, h

(v,h)

)
(
u, Hr

(v,Hr)

) , (4)

for all u | d, where Hr = (h, (qr − 1)/m). Now, we find

[fu1,v, fu2,v] =
r(v, h)

(v,Hr)
·


(
u1,

h
(v,h)

)
(
u1,

Hr

(v,Hr)

) ,
(
u2,

h
(v,h)

)
(
u2,

Hr

(v,Hr)

)
 .

Since (u1, u2) = 1, the lcm is just the product of the two numbers. Moreover, recall
that u 7→ (u, k) is a multiplicative function for all fixed integers k. Therefore, using
(4), we have

[fu1,v, fu2,v] =
r(v, h)

(v,Hr)
·

(
u1u2,

h
(v,h)

)
(
u1u2,

Hr

(v,Hr)

) = fu1u2,v,

and the result follows. □

7. The main theorems

In this section, we prove that the set Rq(a, d) does not have d1-density, and thus
no d2-density by equivalence. However, we show that the d3-density exists and we
find a formula for it. From now on, we denote by f̄ the order of q modulo d(h, d∞).

Theorem 8. The set Rq(a, d) has no d1-density, nor d2-density.

Proof. It suffices to show that the limit, as N tends to infinity, of

Rq(a, d,N)N

qN
(5)

does not exist. We proceed to show that (5) converges to different limits for distinct
subsequences of integers. First, let (xn)n≥1 be an increasing sequence of integers
N not divisible by f . By the discussion at the beginning of Section 5, we have
Rq(a, d, xn) = 0 for all n ≥ 0, which converges to 0. Let (yn)n≥0 be the sequence
defined by yn = f̄(h, d∞)(dn+ 1) for all integers n ≥ 0. By Theorem 7, we have∣∣∣∣Rq(a, d, yn)yn

qyn
− δq(a, d, yn)

∣∣∣∣ ≤ 2ω(d)+1c1τ(eyn
)q−yn/2, (6)
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and by Lemma 6, we have

eyn
=

(
qyn − 1

d
, d∞

)
=

(
qf̄ − 1

d
, d∞

)
(h, d∞)ν,

for some ν | 2∞. We see that eyn is a constant, say E, that does not depend on n.
In particular, τ(eyn) is also a constant and we see that the right hand side of (6)
converges to 0 as n→ +∞. Hence the limit of (5), where we substituted N for yn,
is the limit of δq(a, d, yn). By Theorems 6 and 7,

δq(a, d, yn) =
∑
v|eyn

∑
u|d

µ(u)(uv, h)

uv
· [fu,v | yn]

=
∑
v|E

∑
u|d

µ(u)(uv, h)

uv
· [fu,v | f̄(h, d∞)],

where we used that eyn = E and that fu,v | yn if and only if fu,v | f̄(h, d∞). The
latter follows from Remark 1. It follows that δq(a, d, yn) is a constant that does
not depend on n, say δ. It suffices to show that δ ̸= 0 to complete the proof. Since
Fdv,v is a subfield of Fdv,uv, we find that fv := f1,v divides fu,v for all u | d. We
may write

δ =
∑
v|E

fv|f̄(h,d∞)

∑
u|d

µ(u)(uv, h)

uv
· [fu,v | f̄(h, d∞)].

For all v | E such that fv | f̄(h, d∞), the function

u 7→ µ(u)(uv, h)

u(v, h)
· [fu,v | f̄(h, d∞)]

is multiplicative by Lemma 8. Therefore, we have

δ =
∑
v|E

fv|f̄(h,d∞)

(v, h)

v

∑
u|d

µ(u)(uv, h)

u(v, h)
· [fu,v | f̄(h, d∞)]

=
∑
v|E

fv|f̄(h,d∞)

(v, h)

v

∏
l|d

(
1− (lv, h)

l(v, h)
· [fl,v | f̄(h, d∞)]

)
,

where we used the Euler product formula. We see that δ is non-negative as each
general term is. Hence it suffices to show that there is one non-zero term. We
claim that the term in v = (h, d∞) is positive. First, let us show that we have
fv | f̄(h, d∞). Note that (v, h) = v, so that

f(h,d∞) =
orddv(q)(v, h)

(indFq(ζdv)×(λ), v, h)
=

f̄(h, d∞)

(indFq(ζdv)×(λ), h, d
∞)

.

We find that f(h,d∞) | f̄(h, d∞) and the term in v = (h, d∞) appears in the sum.
Using again that (v, h) = v, and also that (lv, h) = v, we find the general term to
be

(h, d∞)

v

∏
l|d

(
1− [fl,v | f̄(h, d∞)]

l

)
,
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which is non-zero, whether fl,v | f̄(h, d∞) or not. We obtain that

Rq(a, d, xn)xn
qxn

and
Rq(a, d, yn)yn

qyn

converge to 0 and δ > 0 respectively. Hence the limit of (5) as N → +∞ does not
exist. The set Rq(a, d) has no d1-density, and thus no d2-density by [4, Proposition
1.8]. □

The proof of the existence and the computation of the d3-density of Rq(a, d)
requires to partition N into a countable union of distinct arithmetic progressions,
following a method of Ballot [3]. We have

N =

f−1⊔
j=1

Sj ⊔
⊔

w|d∞

d⊔
α=1

(α,d)=1

Aw,α, (7)

where Sj = {fn + j : n ≥ 0} and Aw,α = {fw(α + dn) : n ≥ 0}. Note that for
N ∈ Sj , we have δq(a, d,N) = 0 by the discussion at the beginning of Section 5.
For N = fw(dn+ α) ∈ Aw,α, we have

eN =

(
qfw − 1

d
, d∞

)
= efw,

by Lemma 6. Hence eN is a constant that only depends on w. Moreover, we have
fu,v | N if and only if fu,v | fw, by Remark 1. We obtain

δq(a, d,N) =
∑
v|eN

∑
u|d

µ(u)(uv, h)

uv
· [fu,v | N ]

=
∑
v|efw

∑
u|d

µ(u)(uv, h)

uv
· [fu,v | fw], (8)

which is a constant that does not depend on n, nor α. We denote this quantity by
δw. Moreover, we denote by δq(a, d) the sum

δq(a, d) =
φ(d)

df

∑
w|d∞

δw
w
.

We show that δq(a, d) is the d3-density of the set Rq(a, d). The following lemma is
an already known result that we found in various papers [10, 14] without a proof
or a reference to a proof. Since it is not a long nor difficult result to prove, we find
it preferable to give a proof.

Lemma 9. There exists an absolute and effective constant c2 > 0 such that

Md(x) := #{w ≤ x : w | d∞} ≤ c2 log (x)
ω(d)

,

for all x ≥ 2.

Proof. If l is a prime divisor of d, then lk ≤ x if and only if k ≤ logl x. Thus,

Md(x) =
∑
w|d∞

w≤x

1 ≤
∏
l|d

(logl (x) + 1).

Note that if x ≥ e2, then for all primes l ≥ e2 we have logl (x) + 1 ≤ log (x).
Therefore, for only finitely many primes l we have logl (x) + 1 ≤ Cl log (x) for all
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x ≥ 2, for some absolute constant Cl > 0. The result follows by choosing c2 as the
product of the Cl’s for all primes l ≤ e2. □

The next result can be found in a paper of Sanna [14]. However, the bound given
is in log (x)

ω(d)+1
/x for all x ≥ eω(d). With a slight change in the proof, we find a

bound in log (x)
ω(d)

/x for all x ≥ e2ω(d).

Lemma 10. For every x ≥ e2ω(d), we have∑
w|d∞

w>x

1

w
≤ 3c2 ·

log (x)
ω(d)

x
,

where c2 > 0 is the absolute constant defined in Lemma 9.

Proof. Since d ≥ 2, we have x ≥ e2ω(d) ≥ 2 and Md(t) ≤ c2 log (t)
ω(d) for every

t ≥ x, by Lemma 9. From this inequality and by Abel’s summation formula, we
have∑

w|d∞

w>x

1

w
=
Md(x)

x
+

∫ +∞

x

Md(t)

t2
dt ≤ c2

(
log (x)

ω(d)

x
+

∫ +∞

x

log (t)
ω(d)

t2
dt

)
.

Let g : [e2ω(d),+∞) → R be the function defined by

g(x) =

∫ +∞

x

log (t)
ω(d)

t2
dt− 2 log (x)

ω(d)

x
,

By the Fundamental Theorem of Calculus, we obtain the derivative

g′(x) = − log (x)
ω(d)

x2
− 2 · ω(d) log (x)

ω(d)−1 − log (x)
ω(d)

x2

=
log (x)

ω(d)

x2
− 2ω(d) log (x)

ω(d)−1

x2
.

It follows from x ≥ e2ω(d) that g′ is non-negative, thus g is an increasing function.
Moreover, f converges to 0 as x tends to infinity. Hence g(x) ≤ 0 for every x ∈
[e2ω(d),+∞), and the result follows. □

Lemma 11. For every N ≥ e2ω(d), we have∣∣∣∣ 1N
N∑

n=1

δq(a, d, n)− δq(a, d)

∣∣∣∣ ≤ φ(d)

(
1 +

3c2
fd

)
log (N)

ω(d)

N
,

where c2 is the constant defined in Lemma 9.

Proof. From the partition of N given in (7), we have

SN :=
1

N

N∑
n=1

δq(a, d, n) =
1

N

∑
w|d∞

d∑
α=1

(α,d)=1

∑
n∈Aw,α(N)

δw,

where Aw,α(N) = Aw,α ∩ J1, NK, and using that δq(a, d, n) = 0 if n ∈ Sj , and that
δq(a, d, n) = δw if n ∈ Aw,α. Note that w is be bounded above by N and

#Aw(N) = #{1 ≤ fw(α+ dn) ≤ N : n ≥ 0} =

⌊
N + fw(d− α)

fdw

⌋
,
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thus, we obtain

SN =
1

N

∑
w|d∞

w≤N

d∑
α=1

(α,d)=1

⌊
N + fw(d− α)

fdw

⌋
δw.

By the properties of the floor function, we have
N

fdw
− 1 ≤ #Aw,α(N) ≤ N

fdw
+ 1.

Therefore, on the one hand, we have

SN ≥ φ(d)

fd

∑
w|d∞

w≤N

δw
w

− φ(d)

N

∑
w|d∞

w≤N

δw

= δq(a, d)−
φ(d)

N

∑
w|d∞

w≤N

δw − φ(d)

fd

∑
w|d∞

w>N

δw
w
.

and on the other hand,

SN ≤ φ(d)

fd

∑
w|d∞

w≤N

δw
dw

+
φ(d)

N

∑
w|d∞

w≤N

δw

= δq(a, d) +
φ(d)

N

∑
w|d∞

w≤N

δw − φ(d)

fd

∑
w|d∞

w>N

δw
w

≤ δq(a, d) +
φ(d)

N

∑
w|d∞

w≤N

δw +
φ(d)

fd

∑
w|d∞

w>N

δw
w
.

We obtain

|SN − δq(a, d)| ≤
φ(d)

N

∑
w|d∞

w≤N

δw +
φ(d)

fd

∑
w|d∞

w>N

δw
w
.

By Lemma 9 and since δw ≤ 1, we find

φ(d)

N

∑
w|d∞

w≤N

δw ≤ c2φ(d) ·
log (N)

ω(d)

N
,

for all N ≥ 2, where c2 is the constant defined in the lemma. By Lemma 10, we
have

φ(d)

fd

∑
w|d∞

w>N

δw
w

≤ 3c2φ(d)

fd
· log (N)

ω(d)

N
,

for all N ≥ e2ω(d). □

Theorem 9. There exists an absolute constant c2 > 0 such that∣∣∣∣ 1N
N∑

n=1

Rq(a, d, n)

qn/n
− δq(a, d)

∣∣∣∣ ≤ φ(d)

(
1 +

3c2
fd

)
log (N)

ω(d)

N
+
c3
N
,
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for all N ≥ e2ω(d), with c3 = 2ω(d)+1c1τ(ef )v2(q
f + 1) · q−f/2(q−f/2 − 1)−2 and

where c1 is defined in Lemma 5. In particular, Rq(a, d) has d3-density equal to
δq(a, d).

Proof. First, we put

RN =
1

N

N∑
n=1

Rq(a, d, n)

qn/n
and SN =

1

N

N∑
n=1

δq(a, d, n).

We have

|RN − δq(a, d)| = |RN − SN + SN − δq(a, d)|
≤ |RN − SN |+ |SN − δq(a, d)|

≤ |RN − SN |+ φ(d)

(
1 +

3c2
fd

)
log (N)

ω(d)

N
,

for all N ≥ e2ω(d), by Lemma 11. Let us now bound the term |RN − SN |. Using
Lemma 7, and since Rq(a, d, n) = δq(a, d, n) = 0 if f ∤ n, we have

|RN − SN | ≤ 1

N

N∑
n=1
f |n

∣∣∣∣Rq(a, d, n)

qn/n
− δq(a, d, n)

∣∣∣∣ ≤ 2ω(d)+1c1
N

N∑
n=1
f |n

τ(en)q
−n/2.

By Lemma 6, we know that

en ≤ 2v2(q
f+1)−1

(
qf − 1

d
, d∞

)
(n/f, d∞) ≤ 2v2(q

f+1)efn

f
.

Hence τ(en) ≤ v2(q
f + 1)τ(ef )n/f . We find

|RN − SN | ≤ 2ω(d)+1v2(q
f + 1)c1τ(ef )

Nf

N∑
n=1
f |n

nq−n/2 :=
c

Nf

N∑
n=1
f |n

nq−n/2.

Now, using the well-known equality

+∞∑
n=1

nxn =
x

(x− 1)2
,

valid for |x| < 1, we obtain

|RN − SN | ≤ c

Nf

+∞∑
n=1
f |n

nq−n/2 =
c

Nf

+∞∑
m=0

fmq−fm/2 =
c

N

q−f/2

(q−f/2 − 1)2
=
c3
N
.

This completes the proof of the bound. Letting N tend to infinity shows that the
set Rq(a, d) has d3-density equal to δq(a, d). □

Corollary 2. The set Rq(a, d) has d4 and Dirichlet density equal to δq(a, d).

Proof. Theorem 9 establishes the existence and the value of the d3-density of
Rq(a, d). The result follows from [4, Theorem A]. □
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8. Closed-form for the d3-density

We proved in Section 7 that δq(a, d) is the d3-density of Rq(a, d). However, this
constant is defined via a series, meaning that there are infinitely many operations
to carry out in order to compute it. We show in this section, under the assumption
fu,v = orddv(q) for all u | d and v | d∞, that δq(a, d) can be written in a closed-form
formula, that is, a formula that requires only finitely many simple operations.

We define a function η : N2 −→ N by η(m,n) = 1 if 2 ∤ (n, d) and by η(m,n) =
2v2(q

f̄+1)−1 otherwise. Note that m 7→ η(m, ·) is a multiplicative function. Indeed,
if m1,m2 ≥ 1 are coprime integers, then

η(m1m2, n) =

{
2v2(q

f̄+1)−1, if 2 | (m1m2, n);

1, otherwise.

If 2 | (m1m2, n), then only one of m1 and m2 is even, say m1. Hence we have
η(m1m2, n) = 2v2(q

f̄+1)−1 = η(m1, n)η(m2, n). For the case 2 ∤ (m1m2, n), the
function η is always equal to 1, so the multiplicativity trivially holds.

Proposition 2. Assume that fu,v = orddv(q) for all u | d and v | d∞. For each
w | d∞, we have

δw =


∑
u|d

µ(u)(dh, u∞)

u(qf̄ − 1, u∞)(ν, u∞)η(ν, u)
, if fw = f̄ν, ν | d∞;

0, otherwise.

If fw = f̄ν, we may denote δw by δ(ν) when it is written in the above form to make
the dependence in ν more obvious.

Proof. Since fu,v = orddv(q), and v | efw if and only if orddv(q) | fw, we find from
(8) that δw becomes

δw =
∑
v|fw

∑
u|d

µ(u)(uv, h)

uv
.

Using that the map

u 7→ µ(u)(uv, h)

u(v, h)

defines a multiplicative function, we use the Euler product formula to obtain

δw =
∑
v|efw

(v, h)

v

∑
u|d

µ(u)(uv, h)

u(v, h)
=
∑
v|efw

(v, h)

v

∏
l|d

(
1− (lv, h)

l(v, h)

)
.

For all l | d, we have (lv, h) = l(v, h) if and only if vl(v) < vl(h). Hence δw is
non-zero if and only if (h, d∞) | efw, or equivalently, f̄ | fw. Assume that fw = f̄ν
for some ν | d∞. We have

δw =
∑
v|efw

(h,d∞)|v

(v, h)

v

∏
l|d

(
1− 1

l

)
=
φ(d)

d

∑
v|efw

(h,d∞)|v

(v, h)

v
.
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Since v 7→ (v, h)/v is multiplicative, we again use the Euler product formula on the
sum and find ∑

v|efw

(h,d∞)|v

(v, h)

v
=
∏
l|d

vl(ef̄ν)∑
r=vl(h)

lvl(h)

lr

=
∏
l|d

(
1− lvl(h)−vl(ef̄ν)−1

1− l−1

)

=
d

φ(d)

∏
l|d

(
1− lvl(dh)

lvl(qf̄ν−1)+1

)
.

We obtain

δ(ν) =
∏
l|d

(
1− lvl(dh)

lvl(qf̄ν−1)+1

)
,

where f̄ν = fw. Let g be the function defined by

g : u 7→ µ(u)(dh, u∞)

u(qf̄ν − 1, u∞)
,

for all u ≥ 1. Then, g is multiplicative and by the Euler product formula, we have∑
u|d

µ(u)(dh, u∞)

u(qf̄ν − 1, u∞)
=
∏
l|d

(
1− lvl(dh)

lvl(qf̄ν−1)+1

)
= δ(ν).

We now apply Lemma 6 to (qf̄ν − 1, u∞) in the denominator of the general term
of the sum, which is allowed since u | qf̄ − 1. The result follows. □

Theorem 10. Put C = 3 · 4−1 + 2−v2(q
f̄+1). Assume that fu,v = orddv(q) for all

u | d and v | d∞. Then, we have

δq(a, d) =
1

f̄

∏
l|d

(
1− lvl(dh)C [l=2]

(l + 1)lvl(qf̄−1)

)
.

Proof. By Proposition 2, we may only consider the indices w | d∞ that satisfy
fw = f̄ν for some ν | d∞ in the expression of δq(a, d). We obtain

δq(a, d) =
φ(d)

d

∑
w|d∞

δw
fw

=
φ(d)

d

∑
ν|d∞

δ(ν)

f̄ν
.

Using that (dh, u∞) ≤ (qf̄ − 1, u∞), because f̄ = ordd(h,d∞)(q), the inequality∑
ν|d∞

∑
u|d

∣∣∣∣ µ(u)(dh, u∞)

uν(ν, u∞)(qf̄ − 1, u∞)η(ν, u)

∣∣∣∣ ≤ ∑
ν|d∞

∑
u|d

1

ν
=
τ(d)φ(d)

d

shows that we have absolute converge of the series. Hence we can interchange the
sum symbol in δ(ν) and the series. We have

δq(a, d) =
φ(d)

d

∑
u|d

µ(u)(dh, u∞)

u(qf̄ − 1, u∞)

∑
ν|d∞

1

ν(ν, u∞)η(ν, u)
.
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Let S(u) be the inner series. For all u ∈ N, the function ν 7→ ν(ν, u∞)η(ν, u) is
multiplicative. Moreover, we have η(ν, u) = η(rad(ν), u), where rad is the radical
of an integer function. Therefore

S(u) =
∑
ν|d∞

1

ν(ν, u∞)η(ν, u)
=
∏
l|d

+∞∑
r=0

1

lr(1+[l|u])η(lr, u)

=
∏
l|d

(
1 +

+∞∑
r=1

1

lr(1+[l|u])η(l, u)

)

=
∏
l|d

(
1 +

1

η(l, u)(l1+[l|u] − 1)

)
.

Since η(l, u) = 1 when l ̸= 2 or l ∤ u, we have

S(u) =
∏
l|d
l∤u

(
1 +

1

l − 1

)∏
l|u

(
1 +

2−[l=2](v2(q
f̄−1)−1)

l2 − 1

)
.

Let us first look at the case 2 ∤ u. We have

S(u) =
∏
l|d
l∤u

(
l

l − 1

)∏
l|u

(
l2

l2 − 1

)
=
∏
l|d

(
l

l − 1

)∏
l|u

(
l

l + 1

)
=

du

φ(d)ψ(u)
.

If 2 | u, then, writing u = 2u′, we find

S(u) =
∏
l|d
l∤u

(
l

l − 1

)∏
l|u′

(
l2

l2 − 1

)
·
(
1 +

1

2v2(qf̄−1)−1

)

=
∏
l|d
l∤u

(
l

l − 1

)∏
l|u

(
l2

l2 − 1

)
· 3
4

(
1 +

1

2v2(qf̄−1)−1

)

=
duC

φ(d)ψ(u)
.

Therefore, going back to δq(a, d), we obtain

δq(a, d) =
1

f̄

∑
u|d

µ(u)(dh, u∞)C [2|u]

(qf̄ − 1, u∞)ψ(u)
.

The general term of the sum defines a multiplicative function in the variable u, thus
the result follows from the Euler product formula. □

Remark 2. Note that Theorem 10 coincides with [2, Theorem 3.3] and [3, Theorem
11] that Ballot proved in the case a = T and, respectively, d = 2 and d an odd prime.

In conclusion, we proved that the set Rq(a, d) has d3-density δq(a, d) in Section
7 and we were able to write δq(a, d) in a closed-form in Section 8. However, the
latter was done under the assumption that the degree of the field Fdv,uv over Fq is
equal to orddv(q) for all v | d∞ and u | d. We conclude this paper with a lemma
that gives sufficient conditions for this equality to hold.
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Proposition 3. If either (d, h) = 1 or (d,m) = 1, then

[Fdv,uv : Fq] = orddv(q),

for all v | d∞ and u | d.

Proof. By Lemma 2, we have that

[Fdv,uv : Fq] =
orddv(q)(uv, h)

(indFq(ζdv)×(λ), uv, h)
.

If (d, h) = 1, then (uv, h) = 1 and the result follows. If (d,m) = 1, we use that the
order of λ in Fq(ζdv)

× is still equal to m, the order of λ in F×
q . Hence

indFq(ζdv)×(λ) =
qorddv(q) − 1

m
. (9)

We see in (9) that uv divides indFq(ζdv)×(λ). Indeed, this is because uv | dv and
(uv,m) = 1 imply that uvm | qorddv(q) − 1. □

However, our result is not enough to cover all cases. For instance, it does not
give any information about the density when (d, h,m) > 1.
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