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Abstract

We define a new generalization of Catalan numbers to multinomial coefficients.
With arithmetic methods, we study their integrality and the integrality of their Lucas-
nomial generalization. We give a complete characterization of regular Lucas sequences
for which they yield integers up to finitely many cases.

1 Introduction

The central binomial coefficient
(
2n
n

)
is well known to be divisible by n+1, thus forming the

integer sequence of Catalan numbers C(n). Indeed,

C(n) =
1

n+ 1

(
2n

n

)
,

for all integers n ≥ 0. These numbers are of great interest since they appear in various
contexts and have many combinatorial interpretations. Moreover, they have been generalized
in several ways, such as the generalized Lucasnomial Fuss-Catalan numbers, defined by

Ur

U(a−1)n+r

(
an+ r − 1

n

)
U

:=
Ur

U(a−1)n+r

·
Uan+r−1 · · ·U(a−1)n+r

Un · · ·U1

,

for all integers n ≥ 1, where a ≥ 2 and r ≥ 1 are fixed integers, U = (Un)n≥1 is a Lucas
sequence and

(
an+r−1

n

)
U
is a generalized binomial coefficient with respect to U , which we call

a Lucasnomial coefficient. They are a surprising example of a generalization which yields
integers only. This was shown by Ballot [2, 4] in recent papers which are of relevance to
our work. A Lucas sequence U is a second-order linear recurrence satisfying U0 = 0, U1 = 1
and Un+2 = PUn+1 − QUn for all n ≥ 0, where P,Q are integers. Generalized binomial
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coefficients with respect to an integer sequence X = (Xn)n≥0, with Xn ̸= 0 for all n ≥ 1, are
defined as follows: (

m

n

)
X

=


XmXm−1···Xm−n+1

XnXn−1···X1
, if m ≥ n ≥ 1;

1, if n = 0;

0, otherwise.

In this paper, we prove the integrality of all but a finite number of terms of yet another
generalization of Catalan numbers, namely the multinomial Catalan numbers. These are
defined for all integers n ≥ 1 by

Cl(n) =
1

(n+ 1)l

(
(l + 1)n

n

)
l

:=
1

(n+ 1)l

(
(l + 1)n

n, n, . . . , n

)
,

where l is a positive integer and(
a1 + a2 + · · ·+ al+1

a1, a2, . . . , al+1

)
=

(a1 + · · ·+ al+1)!

a1! · · · al+1!

are multinomial coefficients with positive integers a1, . . . , al+1. It is called a central multino-
mial coefficient when all the ai’s are equal. In particular, our study leads to the following
generalization of the integrality of Catalan numbers:

Theorem 1. The numbers Cl(n) are integers for all n ≥ l.

The usual Catalan numbers correspond to l = 1. Proving Theorem 1 will require studying
the p-adic valuation of multinomial coefficients, where p represents a prime number. Kummer
[8] showed that in the binomial case, the p-adic valuation of

(
m+n
n

)
is equal to the number of

carries in the base-p addition ofm and n. From Kummer’s theorem, usually called Kummer’s
rule, and the identity (

a1 + a2 + · · ·+ al+1

a1, a2, . . . , al+1

)
=

l+1∏
i=1

(
a1 + · · ·+ ai

ai

)
, (1)

we obtain the following generalization of the Kummer rule:

Theorem 2 (Generalized Kummer rule). The p-adic valuation of the multinomial coefficient(
a1 + a2 + · · ·+ al+1

a1, a2, . . . , al+1

)
,

is equal to the number of carries that occur when adding a1, a2, . . . , al, and al+1 in base p. The
number of carries is independent of the order of the summands and of the parenthesization
of the sum.

2



Note that the identity (1) seems to indicate that we first add a1+a2, then (a1+a2)+a3,
etc., but the theorem states a stronger result. An expression a1+a2+ · · ·+al+1 is said to be
parenthesized when any pair of parentheses encloses exactly two summands. For instance,
the expression ((a1 + a2) + (a3 + a4)) is parenthesized, while ((a1 + a2 + a3) + a4) is not.
The number of carries is associative, i.e., independent of the parenthesization of the sum
a1+ · · ·+al+1. Indeed, given a parenthesization where the last addition to perform is A+B,
where A = a1 + · · ·+ ar and B = ar+1 + · · ·+ al+1 for some 1 ≤ r ≤ l, we have

Ml+1 :=

(
a1 + a2 + · · ·+ al+1

a1, a2, . . . , al+1

)
=

(
A

a1, . . . , ar

)(
B

ar+1, . . . , al+1

)(
A+B

B

)
.

Thus, by an induction argument, one can write any multinomial coefficient as the product of
binomial coefficients corresponding to each addition in the chosen parenthesization. Taking
p-adic valuations in the final expression using the ordinary Kummer rule, we must find a
total number of carries equal to vp(Ml+1) for all parenthesizations. Moreover, for every
permutation σ ∈ Sl+1, we have(

a1 + a2 + · · ·+ al+1

a1, a2, . . . , al+1

)
=

(
aσ(1) + aσ(2) + · · ·+ aσ(l+1)

aσ(1), aσ(2), . . . , aσ(l+1)

)
,

hence the number of carries produced in the sum aσ(1) + · · · + aσ(l+1) is the same for all
permutations σ ∈ Sl+1. Let us give an example of the need of parenthesizing. Adding four
copies of a = (111)2 in base 2 in the parenthesized expression ((a + a) + (a + a)) yields 9
carries since we have

1

1
1

1
1

1 1
+ 1 1 1

1 1 1 0

and

1

1
1

1
1

1 1 0
+ 1 1 1 0

1 1 1 0 0

,

and the first addition is performed twice. However, adding four copies of a in the non-
parenthesized expression (a+ a+ a+ a) yields only 3 carries. Indeed, we have

1

1
1

1
1

1 1 1
1 1 1
1 1 1

+ 1 1 1
1 1 1 0 0

since at each position, the addition of four 1’s yields (100)2, thus producing a carry two
positions to the left. Therefore, it is important that additions be performed with parenthe-
sization.

Section 2 is dedicated to lemmas on the number of carries that occur when adding
numbers of the form pj − 1 in base p, with j ≥ 1, and to one property of carries in arbitrary
base-p additions.
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In Section 3, we prove our main theorem on multinomial Catalan numbers, Theorem 10,
which states that the numbers Cl(n) are non-integers for finitely many n ≥ 1. Moreover, we
give a necessary condition on the form of integers n for which Cl(n) is a non-integer.

We differ introducing several definitions, properties, and results concerning Lucas se-
quences and Lucasnomial coefficients to the beginning of Section 4. In particular, we will
recall the primitive divisor theorem and the classification of k-defective regular Lucas se-
quences given by Bilu, Hanrot, and Voutier [5], and a version of Kummer’s theorem suited
for Lucasnomial coefficients [3].

Section 5 proves preliminary results on the l-Lucasnomial Catalan numbers

CU,l(n) =
1

U l
n+1

(
(l + 1)n

n

)
U,l

:=
1

U l
n+1

(
(l + 1)n

n, n, . . . , n

)
U

,

where U is a Lucas sequence and
(
(l+1)n

n

)
U,l

is a generalized multinomial coefficient with

respect to U , which we call an l-Lucasnomial coefficient. (They will be properly defined in
Section 4.)

In Section 6, we proceed to find all pairs (U, l) such that the l-Lucasnomial Catalan
numbers CU,l(n) are integers for all but a finite number of integers n ≥ 1. It turns out that
only a few pairs (U, l) yield only integers up to finitely many exceptions.

Throughout our paper, unless stated otherwise, the letters l and j stand for arbitrary
fixed positive integers and the letter p represents a prime number. We write P for the set
of prime numbers. The p-adic valuation is denoted by vp. For two integers a ≤ b, we
define Ja, bK as the intersection [a, b] ∩ Z. The number of carries in a parenthesized base-p
addition of the positive integers a1, . . . , al+1 will be denoted by Cp(l; a1, . . . , al+1). When
a1 = a2 = · · · = al+1, the notation Cp(l; a1) will be used instead.

2 Counting carries in base-p additions

In our paper and mostly in this section we use various notation for the p-ary expansion of
an integer. For N an integer and aθ, aθ−1, . . . , a1, a0 its p-ary digits, the base-p expansion of
N will sometimes be written as

[aθ, aθ−1, . . . , a1, a0]p.

Other times, it will be represented explicitly as the sum

a0 + a1p+ · · ·+ aθp
θ =

θ∑
i=0

aip
i.

Given a positive integer m, we define the m-fold base-p addition of N as any parenthesized
addition of m copies of N in base p. We proceed to prove two preliminary lemmas for the
m-fold base-p additions of numbers of the form pj − 1, j ≥ 1. This section ends with a
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general lemma on the number of carries in base-p additions. This lemma requires the use of
the Legendre formula:

vp(n!) =
∑
j≥1

⌊
n

pj

⌋
,

valid for all n ≥ 0.

Lemma 3. Let m ∈ J1, pK. The m-fold base-p addition of N = pj − 1 generates (m − 1)j
carries and the p-ary expansion of mN is

[(m− 1), (p− 1), . . . , (p− 1)︸ ︷︷ ︸
j − 1 times

, (p−m)]p.

Proof. We prove the lemma by finite induction on m. For m = 1, there is nothing to prove.
Thus assume the statement holds for m ∈ J1, p− 1K and let us show that it is true for m+1.
Let us choose a parenthesization so that the last base-p addition we perform is mN +N . By
the induction hypothesis, (m− 1)j carries are produced to obtain mN and

mN = [(m− 1), (p− 1), . . . , (p− 1)︸ ︷︷ ︸
j − 1 times

, (p−m)]p.

As p−m ≥ 1, adding the first digits of mN and N yields (p−m)+(p−1) = p+(p−m−1).
Therefore, the first digit of (m+1)N is p−m−1 and one initial carry is produced. Moreover,
the initial carry propagates and generates j − 1 further carries. As the first j digits of N
are p − 1, the digits of (m + 1)N , from the second to the j-th, are p − 1. The last carry is
added to the sum of the (j +1)-st digits of mN and N and does not generate another carry
as (m− 1) + 1 = m < p. Hence

(m+ 1)N = [m, (p− 1), . . . , (p− 1)︸ ︷︷ ︸
j − 1 times

, (p−m− 1)]p,

and the addition did produce (m− 1)j + j = mj carries.

Remark 4. A similar result holds if we replace pj − 1 by ps(pj − 1) for some s ≥ 1, since this
will amount to shifting all operations s digits to the left, leaving s zero digits to the right.

Lemma 5. For all integers i ≥ 0, a pi-fold base-p addition of pj − 1 produces (pi − 1)j
carries.

Proof. Write N = pj − 1. For i = 0, there is nothing to prove. Assume the statement is true
for some i ≥ 0 and let us show it is true for i+ 1. First, write

pi+1N =

pi∑
k=1

pN. (2)
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By Lemma 3, the p-fold base-p addition of N produces (p − 1)j carries, and this is done a
total of pi times on the right hand side of (2). Thus, pi(p− 1)j carries are produced in this
way. By Remark 4, the number of carries occurring in the pi-fold addition of pN is the same
as the number of carries produced in the pi-fold base-p addition of N . By the induction
hypothesis, this addition produces (pi − 1)j carries. Therefore, the total number of carries
counted is

pi(p− 1)j + (pi − 1)j = (pi+1 − 1)j,

and this completes the proof.

Theorem 6. Let m ∈ J1, pj−1K and write m = pνM with p ∤ M . The m-fold base-p addition
of N = pj − 1 generates (m− 1)j carries and the p-ary expansion of MN is[

mθ, . . . ,m1, (m0 − 1), (p− 1), . . . , (p− 1)︸ ︷︷ ︸
j − θ − 1 times

, (p−mθ − 1), . . . , (p−m1 − 1), (p−m0)
]
p
,

where M = [mθ, . . . ,m1,m0]p with 0 ≤ θ < j and mθ ≥ 1.

Proof. First, we assume ν = 0, i.e., m = M , and we proceed by induction of θ. If θ = 0,
then M ∈ J1, p− 1K and the result follows from Lemma 3. As the result holds for j = 1, we
may assume j ≥ 2. Assume the result holds for all t ≤ θ with θ ∈ J0, j − 2K and let us show
it is true for θ+1. Let M ′ = M −mθ+1p

θ+1, and write M ′ = [mt, . . . ,m1,m0]p, where t ≤ θ.
In the addition ( M ′∑

i=1

N

)
+

(mθ+1p
θ+1∑

i=1

N

)
,

we let S1 and S2 represent respectively the first and the second sums above. Since t ≤ θ,
exactly (M ′ − 1)j carries are produced to obtain S1 by the induction hypothesis. Moreover,
since

S2 =

mθ+1∑
i=1

pθ+1N,

using Lemma 5, followed by Lemma 3 and Remark 4, exactly

mθ+1(p
θ+1 − 1)j + (mθ+1 − 1)j = (mθ+1p

θ+1 − 1)j

carries are produced to obtain S2. Thus, so far we have

(M ′ − 1)j + (mθ+1p
θ+1 − 1)j = (M − 2)j

carries. It remains to show that j carries occur in the base-p addition S1 + S2. Let us give
the p-ary expansions of S1 and S2. By the induction hypothesis, S1 is

[mt, . . . ,m1, (m0 − 1), (p− 1), . . . , (p− 1)︸ ︷︷ ︸
j − t− 1 times

, (p−mt − 1), . . . , (p−m1 − 1), (p−m0)
]
p
.
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For S2, we find that

S2 = [(mθ+1 − 1), (p− 1), . . . , (p− 1)︸ ︷︷ ︸
j − 1 times

, (p−mθ+1), 0, . . . , 0︸ ︷︷ ︸
θ + 1 times

]p,

by Lemma 3 and Remark 4. The first θ + 1 digits of S1 + S2 are those of S1 and no carry
occurs. Next, adding the (θ + 2)-nd digits together, we have

(p− 1) + (p−mθ+1) = p+ (p−mθ+1 − 1),

so that the (θ+2)-nd digit of S1+S2 is (p−mθ+1− 1) and a carry occurred. Since the j− 1
following digits of S2 are all equal to p − 1, the first carry generates j − 1 further carries.
Moreover, this implies that the j − 1 digits of S1 + S2 starting from position θ+ 3 are those
of S1. Since S1 has exactly t+ j+1 digits, there is no addition left to consider and the p-ary
expansion of S1 + S2 is[
mθ+1, . . . ,m1, (m0 − 1), (p− 1), . . . , (p− 1)︸ ︷︷ ︸

j − θ − 2 times

, (p−mθ+1 − 1), . . . , (p−m1 − 1), (p−m0)
]
p
.

Therefore, we counted exactly j carries in the addition S1+S2, making for a total of (M−1)j
carries. This ends the proof for ν = 0. If ν ≥ 1, then the p-ary expansion of mN = pνMN
is a ν-left shift of the digits of MN leaving ν zero digits to the right. As for the number of
carries, note that

mN =
M∑
i=1

pνN,

where (M − 1)j carries are produced in the M -fold base-p addition of pνN by Remark 4 and
the case ν = 0. Moreover, the pν-fold base-p addition of N produces exactly (pν −1)j carries
by Lemma 5, so that a total of (M − 1)j +M(pν − 1)j = (m− 1)j carries are produced in
the m-fold base-p addition of N .

Theorem 6 and Lemma 5 show a definite pattern in the number of carries of an m-fold
base-p addition of N = pj − 1 for all m ≤ pj, but this pattern breaks up at m = pj + 1.
Indeed, we have

(m− 1)N = pjN = [(p− 1), . . . , (p− 1)︸ ︷︷ ︸
j times

, 0, . . . , 0︸ ︷︷ ︸
j times

]p

by Theorem 6. Therefore, adding N to (m − 1)N produces no carry since N has exactly j
digits. Thus the total number of carries in the m-fold base-p addition of N is equal to the
number of carries in its (m− 1)-fold base-p addition, that is, (m− 2)j carries.

Lemma 7. Let a1, . . . , al+1 be positive integers and write ai = Aip
j+Bi with integers Bi < pj

and Ai ≥ 0 for all 1 ≤ i ≤ l + 1. Then

Cp(l; a1, . . . , al+1) ≥ Cp(l;A1, . . . , Al+1) + Cp(l;B1, . . . , Bl+1).
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Proof. By Legendre’s formula, we have

vp

((
a1 + · · ·+ al+1

a1, . . . , al+1

))
=

∑
i≥1

(⌊
a1 + · · ·+ al+1

pi

⌋
−

l+1∑
k=1

⌊
ak
pi

⌋)
. (3)

When i ≤ j, we have ⌊
ak
pi

⌋
= Akp

j−i +

⌊
Bk

pi

⌋
, (4)

and ⌊
a1 + · · ·+ al+1

pi

⌋
=

l+1∑
k=1

Akp
j−i +

⌊
B1 + · · ·+Bl+1

pi

⌋
. (5)

When i > j, using the identity ⌊x+ y⌋ = ⌊x⌋+ ⌊y⌋+ ⌊{x}+ {y}⌋ valid for all x, y ∈ R, we
obtain ⌊

ak
pi

⌋
=

⌊
Ak

pi−j

⌋
+

⌊
Bk

pi

⌋
+

⌊{
Ak

pi−j

}
+

{
Bk

pi

}⌋
.

Let Ak = [dθ, . . . , d1, d0]p. Then{
Ak

pi−j

}
=

{
d0 + · · ·+ di−j−1p

i−j−1

pi−j

}
≤ 1− 1

pi−j
,

since di ≤ p− 1 for all 0 ≤ i ≤ θ. With the same method, we obtain{
Bk

pi

}
≤ 1

pi−j
− 1

pi
.

Hence ⌊
ak
pi

⌋
=

⌊
Ak

pi−j

⌋
+

⌊
Bk

pi

⌋
=

⌊
Ak

pi−j

⌋
. (6)

With the assumption i > j, and using again the identity ⌊x+ y⌋ = ⌊x⌋+ ⌊y⌋+ ⌊{x}+ {y}⌋,
we have ⌊

a1 + · · ·+ al+1

pi

⌋
≥

⌊
A1 + · · ·+ Al+1

pi−j

⌋
+

⌊
B1 + · · ·+Bl+1

pi

⌋
. (7)

Putting together (3), (4), (5), (6) and (7), we find that the p-adic valuation of
(
a1+···+al+1

a1,...,al+1

)
is

at least equal to

S :=
∑
1≤i≤j

(⌊
B1 + · · ·+Bl+1

pi

⌋
−

l+1∑
k=1

⌊
Bk

pi

⌋)

+
∑
i>j

(⌊
A1 + · · ·+ Al+1

pi−j

⌋
+

⌊
B1 + · · ·+Bl+1

pi

⌋
−

l+1∑
k=1

(⌊
Ak

pi−j

⌋
+

⌊
Bk

pi

⌋))
.
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But, by Legendre’s formula, S is equal to

vp

((
A1 + · · ·+ Al+1

A1, . . . , Al+1

))
+ vp

((
B1 + · · ·+Bl+1

B1, . . . , Bl+1

))
,

and the result follows from Kummer’s theorem.

Finally, note that to prove these results and the facts given in the introduction, the
primality of p is needed. Indeed, Legendre’s formula and Kummer’s theorem have been
widely used, and they both require that p be a prime.

3 Integrality of multinomial Catalan numbers

Our proof of the integrality of multinomial Catalan numbers amounts to checking that the
p-adic valuation of Cl(n) is non-negative for all primes p. We end up proving that Cl(n) is
not an integer for only a finite number of integers n ≥ 1. For these finitely many exceptional
numbers, we give a necessary condition they must satisfy. The proof has two main steps.
In the theorem below, we first show that Cl(n) has a negative p-adic valuation only when
p ≤ pvp(n+1) ≤ l. Then, we prove that for all pairs (n, p) such that p ≤ pvp(n+1) ≤ l and
vp(Cl(n)) < 0, the integer n + 1 must be a power of p. In particular, this shows that any
exceptional number n satisfies n+ 1 ≤ l, thus ensuring they are finitely many.

Theorem 8. The number Cl(n) is an integer if vp(n+1) ≥ logp (l + 1) for all primes p such
that p ≤ l and p | n+ 1.

Proof. Since multinomial coefficients are integers, vp(Cl(n)) ≥ 0 for every p ∤ n + 1. Hence,
assume p | n + 1 and let j = vp(n + 1). It suffices to show that the p-adic valuation of the
central multinomial coefficient is greater than or equal to lj. Let λ ≥ 1 be the unique integer
such that n+ 1 = λpj. Then

n = (λ− 1)pj +

j−1∑
i=0

(p− 1)pi := (λ− 1)pj +N.

By Kummer’s rule, the valuation of the multinomial coefficient is obtained by counting the
number of carries in the (l+1)-fold base-p addition of n. On the one hand, if p ≥ l+1 then
Lemma 3 ensures that exactly lj carries are produced in the (l + 1)-fold base-p addition of
N . Hence, by Lemma 7, there are at least lj carries in the (l + 1)-fold base-p addition of n.
On the other hand, if p ≤ l and j ≥ logp (l + 1) then l ≤ pj − 1, and Theorem 6 and Lemma
5 ensure that at least lj carries are produced in the (l + 1)-fold base-p addition of n.

Note that Theorem 8 is enough to recover the integrality of the usual Catalan numbers
since there is no prime less than l = 1. However, for higher values of l there are still infinitely
many n ≥ 1 to study. For instance, when l = 2, the integrality of Cl(n) for positive integers
n ≡ 1 (mod 4) is not settled by Theorem 8.
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Lemma 9. Suppose Cl(n) is not an integer. Then n+ 1 is a prime power and l + 1 has at
least two non-zero digits in base n+ 1.

Proof. Since Cl(n) is not an integer, by Theorem 8, there exists a prime number p ≤ l such
that vp(Cl(n)) < 0 and n + 1 = λpj for some integers 1 ≤ j < logp (l + 1) and λ ≥ 1, p ∤ λ.
By contradiction, assume that λ ≥ 2. First write

n = (λ− 1)pj +

j−1∑
i=0

(p− 1)pi := (λ− 1)pj +N.

Since l + 1 > pj, we may write

l + 1 =
θ∑

k=ν

akp
kj,

in base pj, where θ ≥ ν ≥ 0 and 0 ≤ ak < pj with aν , aθ > 0. In the decomposition

l+1∑
i=1

N =
θ∑
k=ν

ak ̸=0

akp
kj∑

i=1

N =
θ∑
k=ν

ak ̸=0

ak∑
i=1

pkj∑
s=1

N,

we count the carries produced in the two inner sums using Lemma 5 and Theorem 6, and
obtain

θ∑
k=ν

ak ̸=0

(
ak(p

kj − 1)j + (ak − 1)j
)
=

θ∑
k=ν

ak ̸=0

(akp
kj − 1)j = (l + 1)j − ηj (8)

carries, where η is the number of non-zero pj-ary digits of l + 1. Note that if l + 1 had only
one non-zero pj-ary digit, then we would have lj carries and Cl(n) would have a non-negative
p-adic valuation, which is a contradiction. Hence l + 1 has at least two non-zero digits in
base pj. Since λ ≥ 2, we know that (λ − 1)pj has at least one non-zero p-ary digit, say
b. Therefore, at least one carry occurs when adding ⌈p/b⌉ copies of (λ − 1)pj together. By
euclidean division, write l + 1 = Qpj + R, where 0 ≤ R < pj and Q ≥ 1. Then, there are
at least ⌊(l + 1)/p⌋ = Qpj−1 + ⌊R/p⌋ carries produced in the (l + 1)-fold base-p addition of
(λ− 1)pj. In particular, Q is either equal to

θ∑
k=ν

akp
(k−1)j or to

θ∑
k=1

akp
(k−1)j,

depending on whether ν > 0 or ν = 0 respectively. In both cases, since l+1 has at least two
non-zero digits in base pj, we have Q ≥ p(θ−1)j and Qpj−1 ≥ pθj−1 ≥ θj for every θ, j ≥ 1.
This, together with (8) and Lemma 7, yields that at least

(l + 1)j − ηj +Qpj−1 ≥ lj + (θ − η + 1)j ≥ lj
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carries are produced in the (l + 1)-fold base-p addition of n. Indeed, θ + 1 is the number of
base-pj digits of l+ 1. Thus, θ + 1 ≥ η, the number of non-zero base-pj digits of l+ 1. This
means that vp(Cl(n)) ≥ 0, which is a contradiction. Hence λ = 1, n+ 1 = pj, and l + 1 has
at least two non-zero digits in base n+ 1.

Theorem 10. There are at most finitely many integers n ≥ 1 such that Cl(n) is not an
integer. Such integers must be of the form

n = pj − 1,

with pj ≤ l and l ̸= apkj − 1 for every k ≥ 1 and a ∈ J1, p− 1K.

Proof. By Theorem 8 and Lemma 9, if there exists n ≥ 1 such that Cl(n) is not an integer
then n = pj − 1, with p ≤ l and 1 ≤ j < logp (l + 1), that is pj ≤ l. Moreover, Lemma 9
ensures that l+1 has at least two pj-ary digits. In other words, l+1 is not of the form apkj

with k ≥ 1 and a ∈ J1, p− 1K.

Remark 11. These integers are not necessarily counterexamples. Indeed, if l = 3 and n = 1,
then n has the form given in Theorem 10, but C3(1) = 3.

Corollary 12. The multinomial Catalan numbers Cl(n) are integers for all n ≥ l.

This last corollary is a direct generalization of the integrality of the usual Catalan num-
bers, which we may recover by taking l = 1. Also note that if l is a prime, then Cl(l − 1) is
not an integer and l − 1 is then the largest counterexample.

4 Preliminaries to the Lucasnomial case

We highlight some useful properties and results concerning Lucas sequences. Most of them
can be found in the work of Ballot [2, 3, 4] or in the book of Williams [9]. Recall that a Lucas
sequence U = U(P,Q) = (Un)n≥0 is a second-order linear recurrence with initial conditions
U0 = 0 and U1 = 1, which satisfies

Un+2 = PUn+1 −QUn,

for all n ≥ 0, where P and Q are non-zero integers. Also, we define ∆ = P 2 − 4Q the
discriminant of U(P,Q), that is, the discriminant of the characteristic polynomial of U . Given
the definition, all terms of a Lucas sequence are integers. Moreover, a Lucas sequence has
many divisibility properties. In particular, U is a divisibility sequence, i.e., for all m,n ≥ 0,
we have

m | n =⇒ Um | Un.

11



We say that U is non-degenerate if Un ̸= 0 for all n ≥ 1. A way of checking the non-
degeneracy of U is to show that U12 ̸= 0, which is a sufficient condition. If U is non-
degenerate and gcd (P,Q) = 1, we say that U is a regular Lucas sequence. Such a sequence
is a strong divisibility sequence, i.e., it satisfies

gcd (Um, Un) = |Ugcd (m,n)|,

for all m,n ≥ 0. If U is regular and ∆ = 0, we find that U is either the sequence of non-
negative integers or defined by Un = (−1)n−1n. Throughout the paper, we assume that U is
a ∆-regular Lucas sequence, that is, a regular Lucas sequence such that ∆ ̸= 0. The second
part of our paper is dedicated to studying the divisibility of the l-Lucasnomial coefficient(

(l + 1)n

n, . . . , n

)
U

:=

(
(l + 1)n

n

)
U,l

,

by U l
n+1, for all n ≥ 0. Let n!U represent the generalized factorial with respect to U , i.e.,

n!U = UnUn−1 · · ·U1 for all n ≥ 1 and 0!U = 1. Here, l-Lucasnomial coefficients are defined
by the formula (

a1 + · · ·+ al+1

a1, . . . , al+1

)
U

:=
(a1 + · · ·+ al+1)!U
a1!U · · · al+1!U

,

where the ai’s are non-negative integers. Moreover, we make the assumption that P > 0
because

U(−P,Q) = (−1)n−1U(P,Q),

for all n ≥ 0, implies that the l-Lucasnomial coefficients with respect to U(P,Q) and
U(−P,Q) are the same up to their sign.

We start by stating and proving different facts about Lucas sequences and l-Lucasnomials.
These include prime divisibility properties of U . We define the rank of appearance ρ = ρU(p)
of a prime p in U to be the least positive integer n such that p | Un. The condition p ∤ Q
guaranties the existence of ρ. Furthermore, the regularity of U implies that p divides some
term of U of positive index if and only if p ∤ Q. From now on, p represents a prime not
dividing Q of rank ρ. The following proposition lists interesting and useful properties of the
rank:

Proposition 13. Let U(P,Q) be a non-degenerate Lucas sequence. Then, for all positive
integers m and n, we have

1. ρ | p−
(
∆
p

)
if p > 2, ρU(2) = 2 if 2 | ∆ and ρU(2) = 3 if 2 ∤ ∆;

2. p | Un if and only if ρ | n;

3. vp(Uρm) = vp(Uρ) + x+ δx,

12



where
(∗
∗

)
is the Legendre symbol, x = vp(m),

δ := vp

(
P 2 − 3Q

2

)
· [p = 2] · [2 ∤ P ],

and δx = δ · [x > 0].

Let P be a statement. In Proposition 13, we used the notation [P ]. It is called the
Iverson symbol and is defined by

[P ] =

{
1, if P is true;

0, if not.

In order to decide the integrality of l-Lucasnomial Catalan numbers, we approach the
problem p-adically just as we did for the usual multinomial Catalan numbers. We proceed
to state a Lucasnomial version of Kummer’s theorem [3].

Theorem 14 (Kummer’s rule for Lucasnomials). Let U(P,Q) be a non-degenerate Lucas
sequence and m and n be positive integers. Then, the p-adic valuation of the Lucasnomial
coefficient

(
m+n
n

)
U
is equal to vp(Uρ) when the proposition

P :

{
m

ρ

}
+

{
n

ρ

}
≥ 1,

is true, plus the number of carries in the base-p parenthesized addition⌊
m

ρ

⌋
+

⌊
n

ρ

⌋
+ [P ],

plus δ when a carry occurs from the first to the second digit, where δ is the integer defined
in Proposition 13.

Note that this result can be generalized to other kinds of sequences [7] using a method
similar to the classical Kummer case. For l-Lucasnomials, we will not use a Lucasnomial
version of Theorem 2, but only the following corollary:

Corollary 15. The p-adic valuation of the l-Lucasnomial coefficient
(
a1+···+al+1

a1,...,al+1

)
U
is equal

to the sum
l∑

i=1

vp

((
a1 + · · ·+ ai+1

ai+1

)
U

)
,

where the ai’s are positive integers.
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Proof. It suffices to note that for every l ≥ 2, we have(
a1 + · · ·+ al+1

a1, . . . , al+1

)
U

=
(a1 + · · ·+ al+1)!U
a1!U · · · al+1!U

=
(a1 + · · ·+ al+1)!U

al+1!U · (a1 + · · ·+ al)!U
· (a1 + · · ·+ al)!U

a1!U · · · al!U

=

(
a1 + · · ·+ al+1

al+1

)
U

·
(
a1 + · · ·+ al
a1, . . . , al

)
U

.

Applying this recurrence relation (l − 1)-times, we obtain(
a1 + · · ·+ al+1

a1, . . . , al+1

)
U

=
l∏

i=1

(
a1 + · · ·+ ai+1

ai+1

)
U

,

and the result follows by taking p-adic valuations.

Throughout the rest of the paper, given U and l, the sequence CU,l =
(
CU,l(n)

)
n≥1

is
called a multi-Catalan sequence if for all but finitely many integers n ≥ 1, the numbers

CU,l(n) =
1

U l
n+1

(
(l + 1)n

n

)
U,l

are integers. As stated briefly in the introduction, only a few pairs (U, l) satisfy this condition.
To find infinite families of integers n ≥ 1 such that CU,l(n) does not belong to Z, we mostly
rely on a result of Bilu, Hanrot, and Voutier [5] on ∆-regular Lucas sequences. For k ≥ 1
an integer, we say that U is k-defective if Uk has no primitive prime divisor, i.e., there is no
prime p ∤ ∆ of rank k in U . They proved the following theorem:

Theorem 16 (Primitive divisor theorem). The sequence U is not n-defective for all n > 30.

In addition to this strong result, all n-defective ∆-regular Lucas sequences have been
found for every positive integer n ≤ 30, we list them in Table 1. We proceed to prove two
preliminary lemmas that determine the p-adic valuation of some Lucasnomial coefficients.

Lemma 17. Let n = λρpj − 1, p ∤ λ, j ≥ 0, and i ∈ J1, ρK. Then

vp

((
(i+ 1)n

n

)
U

)
= j + δj + vp(Uρ) · [i < ρ] + vp(Λi) · [j > 0 or i < ρ] + ci,

where ci is the number of carries produced in the base-p addition of (λ− 1) and (λi− 1), and
Λi = λ(i+ 1)− 1.

Proof. First, write

n

ρ
= λpj − 1 +

ρ− 1

ρ
:= (λ− 1)pj +N +

ρ− 1

ρ
,
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where N =
∑j−1

k=0(p− 1)pk. Note that

in

ρ
= (λi− 1)pj +N +

ρ− i

ρ
,

for every 1 ≤ i ≤ ρ. Let us apply Kummer’s rule for Lucasnomials. When adding the
fractional parts, we obtain{

n

ρ

}
+

{
in

ρ

}
=

2ρ− i− 1

ρ
=

{
1 + ρ−i−1

ρ
, if 1 ≤ i < ρ;

ρ−1
ρ
, if i = ρ.

Thus, when i < ρ, a carry with weight vp(Uρ) occurs across the radix point. Given the digits
of N , this carry generates at least j other carries with total weight j + δj. When i = ρ, no
carry occurs across the radix point, but if j > 0 then the first digits of the integer parts,
⌊n/ρ⌋ and ⌊in/ρ⌋, being p − 1 and p − 1, we obtain one carry with weight 1 + δj, which
generates at least j − 1 more carries. Therefore, we are left with counting carries produced
in the parenthesized base-p addition

(λi− 1)pj + (λ− 1)pj + [j > 0 or i < ρ] · pj,

or equivalently, counting carries in the addition (λi − 1)pj + (λ − 1)pj, plus the number of
carries in the addition (λ(i+1)− 2)pj + pj when i < ρ or j > 0. The latter produces exactly
vp(Λi) carries.

Lemma 18. Let n = λρpj−1, p ∤ λ, j ≥ 0, and i ∈ Jρ+1, 2ρK. Put Λi,j = λ(i+1)−1−[j = 0].
If ρ < i < 2ρ, then

vp

((
(i+ 1)n

n

)
U

)
= j + δj + vp(Uρ) + vp(Λi,j) + ci,

with ci the number of carries produced in the base-p addition of (λ−1) and (λi−1− [j = 0]).
If i = 2ρ, then

vp

((
(i+ 1)n

n

)
U

)
= ci +


j + vp(Λi,j) · [j > 0], if p > 2;

j + v2(Λi,j)− 1, if p = 2 and j > 1;

0, if p = 2 and j ∈ {0, 1},

with ci the number of carries produced in the base-p addition of (λ−1) and (λi−1− [j = 0]).

Proof. Write i = ρ+ t, with 1 ≤ t ≤ ρ, so that with the notation used in the proof of Lemma
17, we have

n

ρ
= (λ− 1)pj +N +

ρ− 1

ρ
,
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and
in

ρ
= n+

tn

ρ
=

ρ− t

ρ
+

{
(λi− 1)pj +M, if j > 0;

(λi− 2), if j = 0,

where

M = (p− 2) + [j ≥ 2] ·
j−1∑
k=1

(p− 1)pk.

Note that adding the fractional parts of n/ρ and in/ρ, we obtain{
n

ρ

}
+

{
in

ρ

}
=

2ρ− t− 1

ρ
=

{
1 + ρ−t−1

ρ
, if 1 ≤ t < ρ;

ρ−1
ρ
, if t = ρ.

(9)

First, assume that j = 0. By (9), a carry with weight vp(Uρ) occurs across the radix point
if and only if i < 2ρ, and we are left with counting carries produced in the parenthesized
base-p addition

(λi− 2) + (λ− 1) + [i < 2ρ],

that is, the carries in the addition of (λi− 2) and (λ− 1), plus the number of carries in the
addition of (λ(i+1)− 3) and [i < 2ρ]. The latter addition produces exactly vp(Λi,0) carries.
Now, assume that j ≥ 1. Then, by (9), we have one carry across the radix point with weight
vp(Uρ) when i < 2ρ, which generates, given the p-ary digits of N , at least j other carries
with total weight j + δj. When i = 2ρ, there is no carry across the radix point, but the
addition of the first digits of N and M yields

(p− 1) + (p− 2) =

{
p+ (p− 3), if p ≥ 3;

p− 1, if p = 2,

thus generating at least j − 1 other carries when p ≥ 3, but no carry when p = 2. If p = 2
and j ≥ 2, then adding the second digits of the integer parts always produces one carry,
which generates at least j − 2 further carries. Therefore, whether i < 2ρ, or i = 2ρ with
p ≥ 3 or p = 2, we are left with counting carries in the parenthesized addition

(λi− 1)pj + (λ− 1)pj +

{
0, if i = 2ρ, p = 2 and j = 1;

pj, otherwise,

and we conclude the proof in the same way we did in Lemma 17.

5 First consequences

In this section, we give some consequences of Lemmas 17 and 18. The theorem below acts as
an l-Lucasnomial-Catalan-number version of Theorem 8. Most of the other results highlight
infinite families of integers n ≥ 1 such that CU,l(n) is, or is not, an integer.
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Theorem 19. Let p ∤ Q satisfy ρU(p) > l. Then vp(CU,l(n)) ≥ 0 for all n ≥ 1.

Proof. Let p be such a prime. If p ∤ Un+1, then it suffices to show that the l-Lucasnomial
coefficient has non-negative valuation. Corollary 15 and [2, (11) and the comment below]
ensure this is the case. Assume p | Un+1 and write n = λρpj − 1 for some λ ≥ 1 with p ∤ λ.
Since ρ = ρU(p) > l, by Lemma 17, Corollary 15, and Proposition 13, we have

vp

((
(l + 1)n

n

)
U,l

)
=

l∑
i=1

vp

((
(i+ 1)n

n

)
U

)
≥ l(j + δj + vp(Uρ)) = vp(U

l
n+1),

that is, vp(CU,l(n)) ≥ 0.

l
The integrality of Lucasnomial Catalan numbers, proved in a paper of Ekhad [6], is

recovered for l = 1. Indeed, p ∤ Q and ρU(p) ≥ 2 imply that vp(CU,1(n)) ≥ 0 for all n ≥ 1 by
Theorem 19. But the regularity of U ensures that these primes are exactly those that divide
U at some term. Therefore, we conclude that CU,1(n) is always an integer.

Lemma 20. If there exists a prime number p > l, p ∤ Q, of rank l in U , then CU,l(lp
j − 1)

is not an integer for all j ≥ 0.

Proof. Since p > l = ρU(p), we have l ≤ p − 1 and p > 2. Putting n = lpj − 1, by Lemma
17 and Corollary 15, we obtain

vp

((
(l + 1)n

n

)
U,l

)
=

l∑
i=1

vp

((
(i+ 1)n

n

)
U

)

= lj + (l − 1)vp(Ul) + [j > 0] · vp(l) +
l−1∑
i=1

vp(i)

= lj + (l − 1)vp(Ul),

where the last equality comes from p > l ≥ i. Since the valuation of the multinomial
coefficient is less than vp(U

l
n+1) = l(vp(Ul) + j), we obtain CU,l(lp

j − 1) ̸∈ Z.

Proposition 21. Assume p > 3 and ρU(p) = p + 1. If there exists a prime q ∤ Q of rank p
in U , then CU,p+1(pq

j − 1) is not an integer for all j ≥ 0.

Proof. Put n = pqj − 1 and l = p + 1. Since ρU(q) = p and ρU(p) = p + 1, we know that
p and q are distinct primes. Moreover, q > 2 since otherwise p = ρU(q) would be equal to
either 2 or 3, which contradicts the assumption p > 3. By Lemmas 17 and 18, and Corollary
15, we have

vq

((
(l + 1)n

n

)
U,l

)
= lj + (l − 1)vq(Up) +

p−1∑
i=1

vq(i) + vq(p+ 1− [j = 0]),
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for every prime q > 2. Since p is the rank of q in U , we have p | q± 1 by Proposition 13, and
we have vq(p) = 0 and vq(i) = 0 for all 1 ≤ i < p− 1. Next, we determine whether q | p± 1.
Solving p | q ± 1 and q | p± 1 for primes p > 3 and q > 2 yields no solution. Hence

vq

((
(l + 1)n

n

)
U,l

)
= lj + (l − 1)vq(Up),

which, after comparing with vq(U
l
n+1) = l(j + vq(Up)), proves the result.

Theorem 22. Assume CU,l = (CU,l(n))n≥1 is a multi-Catalan sequence, l ≥ 2. Then

(1) If l − 1 ̸∈ P or l − 1 ∈ P of rank ρ ̸= l in U , then U is l-defective,

(2) If l − 1 ∈ P>3 of rank l in U , then U is (l − 1)-defective.

Proof. Assume U is not l-defective. Then there exists a prime p ∤ ∆Q of rank l in U and by
Lemma 20, we must have p ≤ l. Moreover, p ∤ ∆ implies that p ̸= l. However, by Proposition
13 we have l | p± 1, thus l must be equal to p+1. The first point is done since we obtained
a contradiction. For the second point, Proposition 21 ensures that U is (l− 1)-defective.

Lemma 23. If there exists an odd prime p ∤ Q of rank ρ in U with ρ ≤ l ≤ min (2ρ, p− 1),
then CU,l(ρp

j − 1) is non-integral for all j ≥ 1.

Proof. Write l = ρ + t with 0 ≤ t ≤ ρ and put n = ρpj − 1. Using Lemmas 17 and 18,
Corollary 15, and since p > 2 and j > 0, we obtain

vp

((
(l + 1)n

n

)
U,l

)
= lj + (l − 1)vp(Uρ) +

l∑
i=1
i ̸=ρ

vp(i),

when l < 2ρ, and

vp

((
(l + 1)n

n

)
U,l

)
= lj + (l − 2)vp(Uρ) +

l∑
i=1
i ̸=ρ

vp(i),

when l = 2ρ. Therefore, from the inequality l < p, we obtain

vp

((
(l + 1)n

n

)
U,l

)
= lj + (l − 1− [l = 2ρ])vp(Uρ),

which is less than vp(U
l
n+1) = l(j + vp(Uρ)).

Until now, almost all results presented in this section are used to disprove the integrality
of CU,l sequences. However, some exceptional pairs (U, l) will later be found. Therefore,
we state a final lemma to help us prove that CU,l is a multi-Catalan sequence for these
exceptional cases.
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Lemma 24. Let n = λρpj − 1 for some j ≥ 0 and λ ≥ 1, p ∤ λ. Assume ρ = p −
(
∆
p

)
,

vp(Uρ) = 1 and
max(ρ, p) ≤ l < 2ρ.

Then vp(CU,l(n)) ≥ 0, except for n = ρ− 1 and ρ = p = l, or ρ = p− 1 and l = p.

Proof. Assume j > 0. Then, by Lemmas 17 and 18, Corollary 15, and the assumption
vp(Uρ) = 1, we have

vp

((
(l + 1)n

n

)
U,l

)
≥ l(j + δj) + (l − 1) +

l∑
i=1

vp(Λi),

where Λi = λ(i + 1) − 1 for all 1 ≤ i ≤ l. Since l ≥ p, there exists 1 ≤ i ≤ l such that
λ(i+ 1) ≡ 1 (mod p). Therefore,

vp

((
(l + 1)n

n

)
U,l

)
≥ l(j + δj + 1) = vp(U

l
n+1).

Now, assume j = 0. Then, using Lemmas 17 and 18, and Corollary 15, we obtain

vp

((
(l + 1)n

n

)
U,l

)
≥ (l − 1) +

ρ−1∑
i=1

vp(Λi) + [l > ρ] ·
l∑

i=ρ+1

vp(Λi,0).

Let 1 ≤ µ ≤ p − 1 be such that µλ ≡ 1 (mod p) and assume λ ̸≡ 1 (mod p). Thus µ ≥ 2,
and taking i = µ− 1 < ρ yields

λ(i+ 1) ≡ 1 (mod p),

and it follows that vp(CU,l(λρ−1)) ≥ 0. Next, assume that p | λ−1 and λ ≥ 2. Let s, λs ≥ 1
and b ≥ 0 be integers such that λ = 1 + λsp

s + bps+1 and λs < p. Put

i =

{
⌊p/λs⌋, if λs > 1;

p− 1, if λs = 1,

and let us count the number of carries produced in the base-p addition (λ − 1) + (λi − 1).
Since 1 ≤ i ≤ p− 1, we have

(iλ− 1) = (i− 1) + iλsp
s + dps+1,

for some integer d ≥ 0 and with iλs < p. Adding the s-th digits of (λ − 1) and (λi − 1) in
base p yields a carry since λs + iλs = (i+ 1)λs ≥ p. By Lemmas 7 and 17,

vp

((
(l + 1)n

n

)
U,l

)
≥ l = vp(U

l
n+1).
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The only remaining case is n = ρ− 1, for which we have

vp

((
(l + 1)n

n

)
U,l

)
= (l − 1) +

ρ−1∑
i=1

vp(i) + [l > ρ] ·
l∑

i=ρ+1

vp(i− 1). (10)

The p-adic valuation in (10) is equal to l − 1 when ρ = p = l, or ρ = p − 1 and l = ρ + 1,
and is at least equal to l = vp(U

l
n+1) otherwise.

6 Multi-Catalan sequences

We are now ready to prove the main results on l-Lucasnomial Catalan numbers. First, we
prove the integrality of all but a finite number of terms of CU,l when (U, l) is an exceptional
pair displayed in Table 3. Then, we proceed to show that for every other pair, there exists
an infinite family of integers n ≥ 1 such that CU,l(n) does not belong to Z.

Lemma 25. Assume l ≥ 2 and let (U, l) be a pair in Table 3. Then the numbers

CU,l(n) =
1

U l
n+1

(
(l + 1)n

n

)
U,l

,

are integers for all n ≥ 1, except for

n =


p− 1, if p | ∆ and l = p;

p− 2, if ρU(p) = p− 1 and l = p;

5, if U = U(1,−1) and l = 6.

In particular, CU,l(n) is an integer for every n ≥ l.

Proof. By Theorem 19, vp(CU,l(n)) ≥ 0 for every prime p ∤ Q with rank ρ > l in U . For every
pair (U, l) in Table 3, except (U(1,−1), 6) and (U(1, 2), 8), we look at the first terms of U ,
up to Ul, and check that all prime factors of those terms satisfy the hypotheses of Lemma
24. It follows that vp(CU,l(n)) ≥ 0 for every prime p ∤ Q of rank ρ ≤ l in U and every n ≥ 1,
except for the few exceptions stated in Lemma 24. Since U is regular, p ∤ Q is equivalent to
p | Um, for some m ≥ 1. Hence, for all but finitely many n ≥ 1, we have vp(CU,l(n)) ≥ 0 for
all primes. Let l = 6 and U = U(1,−1). The above method works for every prime but 2.
Indeed, the first terms of U up to U6 are

0, 1, 1, 2, 3, 5, and 8,

and we see that ρ = ρU(2) = 3 and l = 2ρ, thus Lemma 24 does not apply. Since there is
nothing to prove when 2 ∤ Un+1, assume that 2 | Un+1 and write n+1 = λρ2j for some j ≥ 0
and λ ≥ 1, with 2 ∤ λ. By Lemmas 17 and 18, and Corollary 15, we have

v2

((
7n

n

)
U,6

)
≥ (l − 2) + v2(3λ− 1) + v2(6λ− 2) ≥ l = vp(U

l
n+1),
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when j = 0, where we used 2 ∤ λ, v2(U3) = 1, and δ0 = 0. When j > 0, we have

v2

((
7n

n

)
U,6

)
= 5j + 9 +

5∑
i=1

v2(λ(i+ 1)− 1) + [j > 1](j + v2(7λ− 1)− 1) +
6∑

i=1

ci, (11)

where we used that 2 ∤ λ, v2(U3) = 1, and δj = 1 and where ci is the number of carries in
the base-p addition of (λ− 1) and (λi− 1). When j ≥ 2, we have

v2

((
7n

n

)
U,6

)
= 6j + 8 + v2(3λ− 1) + v2(5λ− 1) + v2(7λ− 1) +

6∑
i=1

ci,

which is at least equal to 6(j + 2) = v2(U
6
n+1) since 2 ∤ λ and we either have v2(3λ− 1) ≥ 2

or v2(5λ− 1) ≥ 2, depending on the value of λ mod 4. When j = 1 and λ = 1, that is, when
n = 5, we find

v2

((
7n

n

)
U,6

)
= 17 < v2(U

6
6 ) = 18,

so that CU,6(5) ̸∈ Z. Next, assume j = 1 and λ ≥ 3. We may write

λ = 1 + 2s + b2s+1,

for some integers s ≥ 1 and b ≥ 0. When i = 1, adding (λ− 1) to (λi− 1) produces at least
one carry from the addition of the s-th digits. Hence

v2

((
7n

n

)
U,6

)
≥ 5j + 10 + v2(3λ− 1) + v2(5λ− 1) ≥ 18 = v2(U

6
6 ),

by (11). That makes the case U = U(1,−1) and l = 6 complete. Let l = 8 and U = U(1, 2).
Here, the method used at the beginning of the proof in the general case works for every
prime but 3. Indeed, the first terms up to U8 are

0, 1, 1,−1,−3,−1, 5, 7, and − 3,

and we see that ρ = ρU(3) = 4 and l = 2ρ, thus Lemma 24 does not apply. Again by Lemmas
17 and 18, and Corollary 15, we have

v3

((
9n

n

)
U,8

)
≥ 8j + 6 + [j > 0] · (v3(Λ4) + v3(Λ8,j)) +

3∑
i=1

v3(Λi) +
7∑

i=5

v3(Λi,j).

Let µ ∈ {1, 2} be such that µλ ≡ 1 (mod 3) and put i = 1 when µ = 2, and i = 3 when
µ = 1. In addition, put i1 = i+ 3 when j > 0, and i1 = i+ 4 when j = 0. Hence

v3(Λi) ≥ 1 and v3(Λi1,j) ≥ 1,

and we obtain v3
((

9n
n

)
U,8

)
≥ 8(j + 1) = v3(U

8
n+1) for all such n ≥ 1.
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Lemma 26. The two sequences U(1,−1) and U(1, 2) are the only ∆-regular Lucas sequences
such that the numbers

CU,6(n) =
1

U6
n+1

(
7n

n

)
U,6

,

are integers for all n ≥ 1, except n = 5 when U = U(1,−1).

Proof. Let CU,6 be a multi-Catalan sequence and note that

U6 = U2U3(P
2 − 3Q). (12)

By Theorem 22, either U is 6-defective or, when ρU(5) = 6, U is 5-defective. From (12),
having ρU(5) = 6 implies that 5 | P 2−3Q. Testing the seven 5-defective sequences displayed
in Table 1, we find that only U(1, 2) satisfies this divisibility relation. By Lemma 25, we
know that CU,6 is multi-Catalan for U(1, 2). Therefore, any other U such that CU,6 is multi-
Catalan must be 6-defective. For the four families of 6-defective sequences, we work on U3

to find multi-Catalan sequences. First, by Lemma 23, U3 may only have 2, 3 or 5 as prime
divisors and, since gcd (U2, U3) = 1 by regularity, these would be primitive prime divisors
of rank 3. Moreover, 5 is actually not a divisor of U3. Indeed, if it were the case, then we
would have ρU(5) = 3 and

v5

((
7(5jρ− 1)

5jρ− 1

)
U,6

)
= 6j + 4v5(U3) + 1 < 6(j + v5(U3)) = v5(U

6
5jρ),

for all j ≥ 0, by Lemmas 17 and 18. Hence, CU,6(5
jρ − 1) is non-integral for all j ≥ 0,

contradicting our hypothesis. Therefore, U3 = ±2a3b for some a, b ≥ 0. If b ≥ 1 then 3 has
rank 3 in U and, by Lemmas 17 and 18,

v3

((
7(3j+1 − 1)

3j+1 − 1

)
U,6

)
= 6j + 4b+ 2,

for every j ≥ 1, which is greater than or equal to vp(U
6
3j+1) = 6(j + b) if and only if b = 1.

Hence b ∈ {0, 1}. Let us now study the four families.

(1) Let Q = (P 2 − 1)/3 with 3 ∤ P ≥ 4. Note that U3 = (2P 2 + 1)/3 is an odd integer, so
a = 0. Hence either U3 = ±1 or U3 = ±3, and it follows that P 2 ∈ {−5,−2, 1, 4}. But
P is an integer greater than or equal to 4, so there is no solution.

(2) Let Q = (P 2 ± 3)/3 with 3 | P . Note that from

U3 =
2P 2 ± 3

3
= ±2a3b,

we obtain ±3 = ±2a3b+1 − 2P 2. Since 2 and 9 do not divide 3, a and b must be equal
to zero. It follows that P 2 ∈ {−3, 0, 3}, giving no solution since P is a non-zero integer.
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(3) Let Q = (P 2 − (−2)i)/3 with P ≡ ±1 (mod 6), i ≥ 1 and (P, i) ̸= (1, 1). Since 2 ∤ PQ,
we see that ρU(2) = 3. Furthermore, note that

δ = v2

(
P 2 − 3Q

2

)
= v2

(
(−2)i

2

)
= i− 1,

and

v2

((
7(3 · 2j − 1)

3 · 2j − 1

)
U,6

)
= 6j + 5δ + 4a+ 3, (13)

for every j ≥ 1. For 6j+5δ+4a+3 in (13) to be at least equal to v2(U
6
3·2j) = 6(j+δ+a),

the inequality δ + 2a ≤ 3 must be satisfied. Since a ≥ 1, we have a = 1 and i ∈ {1, 2}
as the only solutions. If i = 1, then

U3 =
2P 2 − 2

3
= ±2 · 3b,

i.e., P 2 = 1 ± 3b+1. Thus, P 2 ∈ {−8,−2, 4, 10} and P = ±2. However, P is congruent
to ±1 modulo 6, so there is no solution in the case i = 1. If i = 2, then, by the
same method, P 2 = −2 ± 3b+1. Hence P 2 ∈ {−11,−5, 1, 7} and we find the Fibonacci
sequences U(±1,−1) as candidates. These are two of the exceptions in Lemma 25.

(4) Let Q = (P 2 ± 3 · 2i)/3 with P ≡ 3 (mod 6) and i ≥ 1. Then

U3 =
2P 2 ± 3 · 2i

3
= ±2a3b,

and, using the previous method, we find a = 1 and i ∈ {1, 2}. But 9 | P 2, so that b = 0.
Solving for P and i, we find that P = ±3 and i = 2. Hence,

Q =
P 2 + 3 · 2i

3
= 7.

However, for the sequences U(±3, 7), we have ρU(59) = 5 ≤ 6 < min (2 · 5, 59) = 10. By
Lemma 23, CU,6 is not a multi-Catalan sequence for U(±3, 7).

Theorem 27. Assume l ≥ 2. There are no ∆-regular Lucas sequences U with CU,l multi-
Catalan other than the exceptions of Lemma 25.

Proof. If l > 30, then by Theorem 22 the sequence CU,l is multi-Catalan only if U is either
l or (l − 1)-defective. The primitive divisor theorem ensures that this is not the case for
l > 31. For l = 31, U must only be l-defective, thus the same conclusion holds.

Let 5 ≤ l ≤ 30 be an integer not equal to 6. Using both points of Theorem 22 and
inspecting Table 1, we find that the only possible sequences U are those in line l of Table
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1 if l ∈ {5, 7, 10, 12, 13, 18, 30}, in line 13 if l = 14 and in lines 7 or 8 if l = 8. We start
with l = 30, where U = U(1, 2) is the only candidate. Note that the prime 271 has rank
ρ = 17 in U(1, 2). Since ρ ≤ l = 30 < min (2ρ, 271), Lemma 23 ensures that CU,30 is not
multi-Catalan. The same method applies to every other case, except for the exceptions of
Lemma 25. Table 2 lists some possible choices for p and ρU(p) in each case.

We now study the remaining cases, that is, l = 2, 3, 4 or 6, but the case l = 6 has already
been studied in Lemma 26.

(1) Let l = 4. Assume CU,4 is a multi-Catalan sequence. By Lemma 23, only the primes
2 and 3 may have rank lower than or equal to 4 in U . Let p ∈ {2, 3} and assume
ρ = ρU(p) = 2. By Lemmas 17 and 18, and Corollary 15, we have

vp

((
5n

n

)
U,4

)
= 4j + 2vp(P ) +

{
1, if p = 3;

3, if p = 2,

for every n ≥ 1 of the form n = ρpj − 1, j ≥ 0. Note that δj does not appear here since
δj = 0 for j ≥ 0 when ρU(2) = 2. Since vp(U

4
n+1) = 4j + 4vp(P ), we must have P = ±1

or P = ±2, otherwise CU,4(ρp
j − 1) is not integral for all j ≥ 0. If 3 has rank ρ = 4,

then

v3

((
5n

n

)
U,4

)
= 4j + 3vp(U4) + 1,

for every n ≥ 1 of the form n = 3jρ − 1, j ≥ 0. Since v3(U
4
n+1) = 4j + 4vp(U4) and

U4 = U2(P
2 − 2Q), it follows that P 2 − 2Q = ±1 or ±3. Hence

Q =
P 2 ± 1

2
or Q =

P 2 ± 3

2
,

and in particular P = ±1. Therefore, (P,Q) ∈ {(±1, 0), (±1, 1), (±1, 2), (±1,−1)}.
Since Q ̸= 0 and U(±1, 1) is a degenerate Lucas sequence with U3 = 0, we have (P,Q) =
(±1, 2) or (±1,−1), which are exceptions found in Lemma 25.

(2) Let l = 3. Following the method we used for l = 4, we find that the only primes
susceptible of having rank 2 or 3 are the primes 2 and 3. By Lemmas 17 and 18,
Corollary 15 and the assumption that p ∈ {2, 3} has rank 2 in U , we have

vp

((
4n

n

)
U,3

)
= 3j + 2vp(P ) + 1,

for every n ≥ 1 of the form n = ρpj − 1, j ≥ 0. Assuming ρU(p) = 3, we obtain

vp

((
4n

n

)
U,3

)
= 3(j + δj) + 2vp(U3) + 1,
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for every n ≥ 1 of the form n = ρpj − 1, with j ≥ 0. Therefore, U2 and U3 are
coprime divisors of 6, positive or negative, where the coprimality is a consequence of the
regularity of U . The pair (U2, U3) is then one of the following:

(1,±1), (1,±2), (1,±3), (1,±6),

(2,±1), (2,±3), (3,±1), (3,±2), (6,±1),

assuming P > 0. Since U3 = P 2 − Q, we find (P,Q) to be equal to either (1, 0), (2, 1),
or one of the pairs displayed in line 5 of Table 3. However, Q ̸= 0 and U(2, 1) is not ∆-
regular. Hence (P,Q) is in line 5 of Table 3, that is, U(P,Q) is an exception mentioned
in Lemma 25.

(3) Let l = 2. By the same method, only 2 may have rank 2 in U . In that case, putting
n = ρ2j − 1, we obtain

v2

((
3n

n

)
U,2

)
= 2j + vp(P ) + 1,

by Lemmas 17 and 18, and Corollary 15. It follows that (P,Q) is either equal to (±2, Q)
or to (±1, Q), with Q ̸= 1, since (±1, 1) is a degenerate Lucas sequence. Hence U(P,Q)
is an exception mentioned in Lemma 25.

Although CU,l has infinitely many non-integer terms for many pairs (U, l), one can show
that the set of n ≥ 1 for which CU,2(n) is an integer has asymptotic density 1. This can
potentially be done by following the method used by Ballot [2, Lemma 36]. We state this as
a conjecture which we leave as an open problem.

Conjecture 28. Let l ≥ 1 be an integer and U a ∆-regular Lucas sequence. Then the
numbers CU,l(n) are integers for almost all n ≥ 1.

However, some adjustments need to be made in the case l = 2 to the proof given by
Ballot. These adjustments can be made to prove the conjecture for small values of l, but we
think that a different method is required to prove the general case.

7 Appendix

In this appendix section, we display tables that are used in various proofs. The first table
below lists n-defective ∆-regular Lucas sequences U(P,Q), with P > 0 and Q ̸= 0, for
n ≥ 2. It was put together by Ballot [2], but was first given in different tables [1, 5], where
the parametrization was done in terms of P and ∆ instead. Note that the parameter i is an
integer.
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n (P,Q) with P > 0 and (P,Q) ̸= (2, 1)

2 (1, Q) with Q ̸= 1; (2i, Q) with Q odd, i ≥ 1 and (Q, i) ̸= (1, 1)

3 (P, P 2 ± 1); (P, P 2 ± 3i) with 3 ∤ P and i ≥ 0

4 (P, (P 2 ± 1)/2) with P > 1 odd; (2i, 2i2 ± 1) with i ≥ 1

5 (1,−1) (1, 2) (1, 3) (1, 4) (2, 11) (12, 55) (12, 377)

(P, (P 2 − 1)/3) with 3 ∤ P ≥ 4; (P, (P 2 ± 3)/3) with 3 | P ;

6 (P, (P 2 − (−2)i)/3) with P ≡ ±1 (mod 6), i ≥ 1 and (P, i) ̸= (1, 1);

(P, (P 2 ± 3 · 2i)/3) with P ≡ 3 (mod 6) and i ≥ 1

7 (1, 2) (1, 5)

8 (1, 2) (2, 7)

10 (2, 3) (5, 7) (5, 18)

12 (1,−1) (1, 2) (1, 3) (1, 4) (1, 5) (2, 15)

13 (1, 2)

18 (1, 2)

30 (1, 2)

Table 1: List of all n-defective and ∆-regular Lucas sequences, n ≥ 2.

Let l ≥ 1 be an integer and U = U(P,Q), P > 0, a Lucas sequence. Given a pair (U, l),
our second table provides possible choices for a prime p ∤ Q and its rank ρU(p) that validates
the proof of Theorem 27 through the use of Lemma 23. For instance, when U = U(1, 4) and
l = 5, we find that (p, ρU(p)) = (7, 4). By Lemma 23, since ρU(7) ≤ 5 ≤ min (2ρU(7), 6) = 6,
the numbers CU,5(4 · 7j − 1) are not integers for all j ≥ 1.

Note that the first column displays pairs (P,Q) for Lucas sequences U = U(P,Q), with
P > 0, and that the first line displays values of l. An empty cell means that it is not needed
to apply Lemma 23 for the corresponding pair (U, l), thus no prime is provided.
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U \ l 5 7 8 10 12 13 14 18

(1, 2) (17, 9) (17, 9) (17, 9) (31, 16)

(1, 5) (11, 5) (11, 5) (71, 9)

(1, 4) (7, 4) (43, 11)

(1, 3) (23, 11)

(1,−1) (89, 11)

(2, 15) (43, 11)

(2, 3) (73, 9)

(5, 18) (31, 8)

(5, 7) (19, 9)

(2, 7) (17, 6)

(2, 11) (7, 3)

(2, 55) (17, 3)

(2, 277) (31, 3)

Table 2: Choices of (p, ρU(p)) for a successful application of Lemma 23, U = U(P,Q), P > 0.

Our last table lists all pairs (U, l), with l ≥ 2 and U a ∆-regular Lucas sequence, such
that the numbers

CU,l(n) =
1

U l
n+1

(
(l + 1)n

n, . . . , n

)
U

are integers for all but finitely many n ≥ 1.
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l (P,Q) with P > 0

2 (1, Q) with Q ̸= 1; (2, Q) with Q ̸= 1 odd

(1,−5) (1,−2) (1,−1) (1, 2) (1, 3) (1, 4)

3 (1, 7) (2, 3) (2, 5) (2, 7) (3, 7) (3, 8)

(3, 10) (3, 11) (6, 35) (6, 37)

4 (1,−1) (1, 2)

5 (1,−1) (1, 2) (1, 3)

6 (1,−1) (1, 2)

7 (1, 2)

8 (1, 2)

Table 3: List of all multi-Catalan ∆-regular Lucas sequences, l ≥ 2.
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