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Abstract. It is known that all terms Un of a classical regular Lucas sequence
have a primitive prime divisor if n > 30 [2]. In addition, a complete description
of all regular Lucas sequences and their terms Un, 2 ≤ n ≤ 30, which do not
have a primitive divisor is also known. Here, we prove comparable results
for Lucas sequences in polynomial rings, correcting some previous theorem
on the same subject. The first part of our paper develops some elements of
Lucas theory in several abstract settings before proving our main theorem in
polynomial rings.
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1. Introduction

Let a and b be non-zero integers such that a ̸= ±b. In 1892, Zsigmondy [6]
proved that for all n ≥ 1 but a few exceptions, there exists a prime number that
divides an−bn but not any ak−bk, for 1 ≤ k < n. Such a prime is called a primitive
divisor of an − bn. In particular, there always exists a primitive prime divisor for
n ≥ 7. Knowing that a− b divides an − bn for all n ≥ 1, numbers of the form

an − bn

a− b
, (1)

also have a primitive divisor for n ≥ 7. Moreover, such a formula defines a second
order linear recurrence known as a Lucas sequence. Indeed, a Lucas sequence
U = (Un)n≥0 with parameters P,Q ∈ Z is a sequence with initial terms U0 = 0 and
U1 = 1 satisfying

Un+2 = PUn+1 −QUn,
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for all n ≥ 0. The polynomial f(X) = X2−PX+Q is the characteristic polynomial
of U . We denote its discriminant P 2 − 4Q by ∆. If a and b are the roots of f in
Q(

√
∆), then either

Un = nan−1 or Un =
an − bn

a− b
,

for all n ≥ 0, depending on whether a = b or a ̸= b respectively. Therefore, (1) leads
to another generalization of Zsigmondy’s theorem with a and b not only integers,
but also quadratic conjugates: is there an n0 ≥ 1 such that Un has a primitive
prime divisor p ∤ ∆ = (a − b)2 for all n ≥ n0? If n0 exists, can we classify all
sequences U and integers 1 ≤ n ≤ n0 for which Un fails to have a primitive divisor?

A partial answer was given by Carmichael [3] in the case gcd(P,Q) = 1 and
∆ > 0, where n0 = 13. For instance, let P = 1 and Q = −1. Then U is the
Fibonacci sequence F which has the form

Fn =
ϕn − ϕ̄n

√
5

,

for all n ≥ 0, where ϕ is the golden ratio and ϕ̄ its quadratic conjugate. Carmichael
showed that F has a primitive prime divisor that does not divide ∆ for all n ̸∈
{1, 2, 5, 6, 12}. A full answer was given by Bilu, Hanrot, and Voutier [2] when P
and Q are relatively prime. Their theorem states that U has a primitive prime
divisor p ∤ ∆ for all n ≥ 31. Moreover, they give a full description of the sequences
U and indices 1 ≤ n ≤ 30 for which the theorem fails. Note that all such sequences,
except for one, satisfy Carmichael’s bound n0 = 13. Indeed, the only exception is
the Lucas sequence with parameters P = 1 and Q = 2 for which U30 does not have
a primitive divisor.

Further generalizations may be considered. Here, we are concerned with polyno-
mial rings A[T ] with A a unique factorization domain. This makes A[T ] a unique
factorization domain in which the irreducible elements are irreducible polynomials.
In this setting, we call a primitive prime divisor of Un an irreducible polynomial
that divides Un, but no Uk for all 1 ≤ k ≤ n, for U a Lucas sequence. Recently, Sha
[4] investigated the case of rings A of multivariate polynomials over an arbitrary
field K of characteristic p, where p is zero or a prime number. In particular, Sha
studied the case of Lucas sequences with coprime parameters P,Q ∈ A and proved
the following theorem, see [4, Theorem 1.4], which we state as Sha did:

Theorem 1. Suppose the characteristic p > 0 and let U ′ be the sequence obtained
from (Un)n≥1 by deleting the terms Un with p | n, then each term of U ′ beyond the
second has a primitive prime divisor. If p = 0, then each term of (Un)n≥1 beyond
the second has a primitive prime divisor.

However, there seems to be a small mistake towards the end of Sha’s proof,
invalidating his result. Indeed, his proof relies on the fact that a term Un, for
n ≥ 2, has a primitive divisor if and only if Φn(a, b) has a positive polynomial
degree. Here, a and b are the roots of the characteristic polynomial of U , and
Φn is the n-th homogeneous cyclotomic polynomial. In his proof, Sha states that
Φn(a, b) must have positive degree, since at least one of a and b is transcendental
over the field K, and does not give further explanation. Note that this assertion
is used in the proof of a similar theorem for Lehmer sequences [4, Theorem 1.2],
and that Sha deduces another result [4, Theorem 1.6] from Theorem 1. Let us give
a few counterexamples to this statement and thus to Theorem 1. Let A be any
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multivariate polynomial ring over a field K with characteristic p ̸∈ {2, 3}, P ∈ A
be non-constant and λ ∈ K×. Let U be the Lucas sequence with characteristic
polynomial

f(X) = X2 − PX + (P 2 − λ).

Then, the first terms of U are U0 = 0, U1 = 1, U2 = P and U3 = λ. Since λ is a
non-zero constant, we see that U3 does not have a primitive prime divisor. Now,
the roots of f are

a =
P −

√
4λ− 3P 2

2
and b =

P +
√
4λ− 3P 2

2
,

which are transcendental over K because P is not a constant. Hence, we obtain
Φ3(a, b) = a2 + ab + b2 = λ, contradicting Sha’s statement. For a more specific
example, we let A = Fq[T ], where Fq is the finite field with q = 7s elements, s ≥ 1.
Define U with characteristic polynomial

f(X) = X2 − 4TX + (3T 2 − 1).

We find that U6 = 3U2U3. Thus, U6 has no primitive prime divisor. The roots of
f are a = 2T −

√
T 2 + 1 and b = 2T +

√
T 2 + 1, and Φ6(a, b) = 3.

The object of this paper is to obtain a corrected version of Sha’s theorem for
A[T ], where A is a unique factorization domain. We use the same approach as
Yabuta [5], who gave a simplified proof of Carmichael’s result.

Section 2 is split in two parts. We first define and prove various divisibility
properties of Lucas sequences in integral domains. The proofs given are similar,
if not the same, as the ones given for the usual Lucas sequences in Z. See [1,
Theorems 38 and 2, Lemma 2, Theorem 3, Lemmas 8 and 7, and Theorem 8]
for the Z-analogues of Lemmas 1, 2, and 4, Proposition 2, Lemmas 5 and 6, and
Proposition 3 respectively. Then, we study prime ideals that divide terms of a
Lucas sequence in a unique factorization domain.

We prove our main theorem in Section 3. For a Lucas sequence U and an integer
n ≥ 1, we show that if p ∤ n, then Un has a primitive prime divisor except for n = 1
and possibly at most one value in {2, 3, 4, 6}. For each n in {2, 3, 4, 6}, we give a
condition on P and Q for Un to not have a primitive prime divisor.

Throughout this paper, the letters n and p denote respectively an integer, and
zero or a prime number. For an arbitrary field L, we let L̄ denote an algebraic
closure of L and ζn ∈ L̄ denote a primitive n-th root of unity. For x an element of
a ring, we write (x) for the principal ideal generated by x. The notation (m,n) is
used to denote the greatest common divisor of integers m and n.

2. Basic properties of general Lucas sequences

Throughout this section, the letter R denotes an integral domain with charac-
teristic p. Let K be the fraction field of R. For non-zero P,Q ∈ R, we consider
f(X) = X2 − PX + Q with roots a, b ∈ K̄ . If p ̸= 2, then by the discriminant
method, we have ∆ = P 2 − 4Q and

a =
P +

√
∆

2
and b =

P −
√
∆

2
.

This method does not work in characteristic 2. However, if a is a root of f then
b = a + P is the other root of f . Putting ∆ = P 2 − 4Q = P 2 in this case, we see
that a − b =

√
∆ for all values of p. Let U = U(P,Q) be the sequence defined by
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U0 = 0, U1 = 1 and Un+2 = PUn+1−QUn for all integers n ≥ 0. We see that U has
characteristic polynomial f and, with a and b the roots of f , we find the explicit
classic formula for Un to be

Un =
an − bn

a− b
,

or Un = nan−1 for all n ≥ 0, depending on whether a ̸= b or a = b respectively. We
call U the Lucas sequence with parameters P,Q ∈ R.

We split this section into two subsections. We first give properties related to
Lucas sequences in R. Next, we study the behavior of prime ideals in a Lucas
sequence in the case of a unique factorization domain.

2.1. Integral domains. We consider two types of Lucas sequences: the degenerate
and non-degenerate Lucas sequences. A sequence U such that Un = 0 for some
positive n is said to be degenerate. Therefore, a Lucas sequence which is not zero
for all n ≥ 1 is called non-degenerate. The following result shows that degeneracy
can be expressed as a relation between the roots of the characteristic polynomial:

Lemma 1. A Lucas sequence U is degenerate if and only if a = ζb for some root
of unity ζ ∈ K (a), where ζ ̸= 1 if p = 0.

Proof. If a = b, then Un = nan−1 = 0 if and only if p | n because Q ̸= 0. If a ̸= b,
then Un = 0 for some n ≥ 1 if and only if

an − bn

a− b
= 0 ⇐⇒

(
a

b

)n

= 1 ⇐⇒ a = ζnb,

where ζn is an n-th root of unity in K (a). □

Clearly, if Un is zero for some n ≥ 1, it follows that U cannot have primitive
divisors past that term. Therefore, we assume throughout this paper that U is
non-degenerate.

Proposition 1. For all m > n ≥ 0, we have Um = Un+1Um−n −QUnUm−n−1.

Proof. Induction on m ≥ n+ 1 for a fixed n ≥ 0. □

Note that this proposition is valid for Lucas sequences in any commutative ring
and is widely used throughout this section. Another important tool is the next
lemma, which states that U is a divisibility sequence:

Lemma 2 (Divisibility sequence). For all m,n ≥ 0, we have (Umn) ⊂ (Un).

Proof. By induction on m ≥ 0, and using Proposition 1. □

We recall that two ideals I and J in R are said to be coprime if I + J is equal
to the whole ring R. For R = Z, it is known that if P and Q are coprime, then U
satisfies interesting and strong properties. Now, we study the properties a Lucas
sequence may satisfy when (P ) + (Q) = R.

Lemma 3. Let x, y, z ∈ R. If (y) + (z) = R, then (xy) + (z) = (x) + (z).

Proof. One inclusion is trivial. Let α ∈ (x) + (z). Then, α = ax + bz for some
a, b ∈ R. But R = (y) + (z), so a = uy + vz for some u, v ∈ R. Hence α =
uxy + (b+ xv)z ∈ (xy) + (z). □

Lemma 4. If (P ) + (Q) = R, then (Q) + (Un) = R for all n ≥ 1.
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Proof. We proceed by induction on n ≥ 1. If n = 1, then (Q) + (1) = R. Assume
that the result is true for some n ≥ 1. We have

(Q) + (Un+1) = (Q) + (PUn −QUn−1)

= (Q) + (PUn)

= (Q) + (P )

= R

where we used Lemma 3 with x = P , y = Un and z = Q in the second-to-last
step and the assumption (P ) + (Q) = R in the last step. The result follows by
induction. □

Proposition 2. We have (P )+ (Q) = R if and only if (Um)+ (Un) = (U(m,n)) for
all m,n ≥ 0.

Proof. For the “if” part, R = (U2) + (U3) = (P ) + (P 2 −Q) = (P ) + (Q). For the
converse, we start by showing the result holds for m = n+1 by induction on n ≥ 0.
The case n = 0 is trivial, thus assume the result is valid for some integer n ≥ 0.
We have

(Un+2) + (Un+1) = (PUn+1 −QUn) + (Un+1) = (QUn) + (Un+1).

By Lemma 4, we have R = (Q) + (Un+1). Thus, by Lemma 3 with x = Un, we
obtain

(Un+2) + (Un+1) = (Un) + (Un+1),

and we conclude by the induction hypothesis. Next, let m ≥ 0 be an integer. Since
(m,n) = (n,m), we may assume without loss of generality that m ≥ n and write
m = qn+ r, where q ≥ 0 and 0 ≤ r < n. By Proposition 1, we have

(Um) = (Ur+1Unq −QUrUnq−1) ⊂ (Unq) + (QUrUnq−1).

We already know that (Unq) + (Unq−1) = R, so that

(Unq) + (QUrUnq−1) = (Unq) + (QUr)

by Lemma 3. Moreover, since (Unq) + (Q) = R by Lemma 4, we obtain

(Unq) + (QUrUnq−1) = (Unq) + (Ur)

by Lemma 3. By Lemma 2, we have (Unq) ⊂ (Un) and thus

(Um) + (Un) ⊂ (Unq) + (Ur) + (Un) = (Un) + (Ur).

We obtain (Um) + (Un) ⊂ (U(m,n)) by applying the Euclidean algorithm to this
method. The other inclusion follows trivially from Lemma 2. □

A non-degenerate Lucas sequence U = U(P,Q) with (P ) + (Q) = R is called a
regular Lucas sequence. If ∆ ̸= 0, then U is called a ∆-regular Lucas sequence.

Let a ⊊ R be an ideal. We define the rank of appearance of a in U , denoted by
ρU (a) or ρ, to be the least integer n ≥ 1 such that (Un) ⊂ a. If the rank does not
exist, we write ρU (a) = +∞. Let D := (P ) + (Q).

Lemma 5. If D + a = R, then either (Q) + a = R or ρU (a) = +∞.
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Proof. If a is the zero ideal, then ρU (a) = +∞, as U is non-degenerate. Assume
a ̸= (0) and (Q) + a ̸= R. Then R is not a field and there exists a maximal ideal
m ⊂ R such that (Q) + a ⊂ m. We have

Un+2 − PUn+1 = −QUn ∈ m,

for all n ≥ 0. Thus, we have Un+2 ≡ PUn+1 ≡ · · · ≡ Pn+1 (mod m), but (Q) ⊂ m
and D +m = R imply that (P ) ̸⊂ m. Hence Un ̸∈ m for all n ≥ 2. The case n = 1
is easily verified. It follows that Un does not belong to a for all n ≥ 1 and that
ρU (a) = +∞. □

Throughout the rest of this section, we let the letter p denote a prime ideal in
R. Next, we study properties analogous to well-known prime divisibility properties
in the R = Z setting.

Lemma 6. If D + p = R, then (Un+1) + (Un) ̸⊂ p for all n ≥ 0.

Proof. Let ρ = ρU (p). If ρ = +∞, there is nothing to do. If ρ < +∞, we proceed
by induction on n ≥ 0. If n = 0, then (0) + (1) = R ̸⊂ p. Assume the result holds
for some n ≥ 0 and that

(Un+2) + (Un+1) = (QUn) + (Un+1) ⊂ p, (2)

by contradiction. We find that (QUn) ⊂ p. Since p is a prime ideal, QUn ∈ p
implies that Q or Un belongs to p. However, since the rank of p exists, we must
have (Q) ̸⊂ p by Lemma 5. Thus we conclude that (Un) ⊂ p. By (2), we have
(Un+1) ⊂ p and therefore

(Un+1) + (Un) ⊂ p,

contradicting the induction hypothesis. Hence (Un+2) + (Un+1) ̸⊂ p. □

Proposition 3. If D+p = R and the rank ρU (p) exists, then (Un) ⊂ p if and only
if ρU (p) | n.

Proof. The “if” part follows from Lemma 2. Assume that (Un) ⊂ p. By minimality
of the rank, we must have n ≥ ρ := ρU (p). Hence n = qρ + r for some q ≥ 1 and
0 ≤ r < ρ. By Proposition 1, we have

Un = Ur+1Uqρ −QUrUqρ−1.

By Lemma 2, this implies that (QUrUqρ−1) ⊂ p. Since D + p = R, we use Lemma
6 to find that (Uqρ) + (Uqρ−1) ̸⊂ p. Since (Uqρ) ⊂ p, we obtain that (Uqρ−1) ̸⊂ p.
Thus, we have QUrUqρ−1 ∈ p and QUqρ−1 ̸∈ p. Since p is a prime ideal, we find
that Ur ∈ p, so (Ur) ⊂ p. But r < ρ implies that r = 0 and n = qρ by minimality
of the rank. □

2.2. Unique factorization domains. Let R be a unique factorization domain
with characteristic p. Hence, irreducible elements x ∈ R are prime elements, that
we call primes. We denote both x and the prime ideal (x) by p as a shorthand. We
let vp denote the p-adic valuation, the function defined by

vp(x) = max{n ≥ 1 : pn | x},

for all non-zero x ∈ R, and vp(0) = −∞. Moreover, a valuation satisfies the
following properties:

vp(xy) = vp(x) + vp(y) and vp(x+ y) ≥ min(vp(x), vp(y)),
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for all x, y ∈ R. We recall that a valuation and its properties can be extended to
the field of fractions of R by vp(x/y) = vp(x)− vp(y) for all x, y ∈ R.

Let U be a regular Lucas sequence with parameters P,Q ∈ R, i.e., it satisfies
(P ) + (Q) = R. By Proposition 3, we know that if ρU (p) exists, then p divides a
term Un if and only if ρU (p) divides n. The aim of this subsection is to describe
the behavior of vp(Un) for all integers n ≥ 1 divisible by ρU (p).

Lemma 7. Assume p > 0. For all i, n ≥ 0, we have Upin = ∆
pi−1

2 Upi

n .

Proof. Since U is regular, it is non-degenerate. By Lemma 1, and because p > 0,
we have a− b =

√
∆ ̸= 0 and

Upin =
ap

in − bp
in

a− b
=

(an − bn)p
i

a− b
= (a− b)p

i−1Upi

n = ∆
pi−1

2 Upi

n .

□

Lemma 8. If p > 0 and ρU (p) exists, then p | ∆ if and only if ρU (p) = p.

Proof. By Lemma 7, we have Up = ∆(p−1)/2. (Note that U2 = P and ∆ = P 2 in
characteristic 2.) Thus, all primes of rank p divide ∆. For the converse, we find
that ρU (p) | p by Proposition 3. Hence ρU (p) = p since U1 = 1. □

Theorem 2. Assume p > 0 and ρ := ρU (p) exists. Then

vp(Uρn) = pvp(n)vp(Uρ) +
(pvp(n) − 1)vp(∆)

2
.

Proof. Write n = λpu for some integers λ ≥ 1, p ∤ λ, and u ≥ 0. Since U is a
regular sequence, by Proposition 2, we have (Un, Uρpu+1) = U(n,ρpu+1) = Uρpu . The
result follows by taking the p-adic valuation and using Lemma 7.

□

The next theorem deals with the case of a unique factorization domain and a
polynomial ring R of characteristic zero. The key point is that R is a polynomial
ring and we can use the notion of polynomial degree. In particular, any irreducible
element p is an irreducible polynomial with positive degree. Note that the theorem
is not valid otherwise, as [1, Sect. 2.4, Lemma 11] shows for R = Z.

Theorem 3. Assume that R is a polynomial ring with p = 0, and that ρU (p) exists.
Then, we have vp(Uρn) = vp(Uρ) for all n ≥ 1.

Proof. Let V = (Vn)n≥0 ⊂ R be the sequence defined by Vn = an+bn for all n ≥ 0.
It is called a companion Lucas sequence. We may prove the following formulas in
any integral domain with zero characteristic:

2n−1Ukn =

⌊(n−1)/2⌋∑
i=0

(
n

2i+ 1

)
∆iU2i+1

k V n−2i−1
k , (3)

for all m,n ≥ 0, and V 2
n −∆U2

n = 4Qn for all n ≥ 0. These are classical formulas
in the theory of Lucas sequences and proofs can be found in the book of Ballot
and Williams [1, Sect. 2.2, equations (2.28) and (2.8)] for Z. This classical proof is
valid in any commutative ring of characteristic different from 2. Now, the formula
V 2
n −∆U2

n = 4Qn shows that (Un, Vn) divides 4Qn for all n ≥ 0. It follows that p is
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not a divisor of Vρ as p ∤ Q by Lemma 5, and p has positive degree. Putting k = ρ
in (3), we obtain

2n−1Uρn ≡ nUρV
n−1
ρ (mod U2

ρ ).

If λ = vp(Uρ), then this implies

2n−1Uρn ≡ nUρV
n−1
ρ (mod pλ+1),

but pλ∥nUρV
n−1
ρ and we find that vp(Uρn) = λ. □

3. The main theorem

Let A be a unique factorization domain with characteristic p. We consider the
case of the polynomial ring R = A[T ]. We use the letter R as in the previous section
because R is a unique factorization domain. Let K denote the field of fraction
of R. In this section, we prove our main theorem on primitive prime divisors of
Lucas sequences with parameters P,Q ∈ R. We assume that P and Q are non-zero,
coprime and that one of P or Q has positive polynomial degree. These assumptions
ensure that the characteristic polynomial of U has distinct roots. Indeed, the roots
are equal if the discriminant ∆ = P 2 − 4Q is zero, which can not happen if p = 2,
since P is non-zero. If p ̸= 2, then 2 deg(P ) = deg(Q) ≥ 1, and P and Q can not
be coprime. We follow a method of Yabuta [5].

Let (Qn)n≥0 be the sequence defined by Q0 = Q1 = 1 and for all n ≥ 2 by Qn :=
Qn(a, b) = Φn(a, b), where Φn is the n-th homogeneous cyclotomic polynomial
defined by

Φn(X,Y ) =
∏

1≤k≤n
(k,n)=1

(X − ζknY ),

for all n ≥ 1. We have the following well-known identity:

Xn − Y n =
∏
d|n

Φd(X,Y ) = (X − Y )
∏
d|n
d>1

Φd(X,Y ),

which, applied to the Lucas sequence U , yields

Un =
an − bn

a− b
=

∏
d|n
d>1

Φd(a, b) =
∏
d|n

Qd. (4)

We want to study the prime divisors of Un by looking at those of Qd for all d | n.
However, we first need to check that Qn belongs to R for all n ≥ 1. It is true for
n = 1 and n = 2 since Q1 = 1 and Q2 = P . For n ≥ 3, we first note that φ(n) is
even, where φ is Euler’s totient function. Moreover, following the method used in [1,
p. 89], we may prove that Qn(a, b) = Qn(b, a). It follows that Qn ∈ K = Frac(R).
Indeed, let L = K(a) be the splitting field of the characteristic polynomial of U ,
that is, X2−PX+Q. It is a Galois extension of K of degree 1 or 2. Hence Qn ∈ K
if and only if σ(Qn) = Qn for the non-trivial automorphism σ of L/K, when it
exists. If L is a quadratic extension of K, then

σ(Qn(a, b)) = Qn(σ(a), σ(b)) = Qn(b, a) = Qn(a, b),



PRIMITIVE DIVISORS OF LUCAS SEQUENCES IN POLYNOMIAL RINGS 9

because σ sends a to b. Thus Qn ∈ K. To prove that Qn is integral, we show that
vp(Qn) ≥ 0 for all irreducible elements p ∈ R. By (4), we have

vp(Un) =
∑
d|n

vp(Qd),

and, using the Möbius inversion formula, we obtain

vp(Qn) =
∑
d|n

µ(n/d)vp(Ud).

In prime characteristic, Lemma 7 shows that it suffices to determine vp(Qn) for all
n ≥ 3 not divisible by p. Indeed, if n = mpi, we have

Un = ∆
pi−1

2 Upi

m ,

Therefore, since ∆ ∈ R, we have Qn ∈ R if and only if Qd ∈ R for all d | m by (4).
For simplification, we write p ∤ n even in characteristic zero since it is equivalent to
n ≥ 1. If ρU (p) ∤ n, then vp(Qn) = 0 and we are done. Assume ρ = ρU (p) | n. By
Theorem 2 if p > 0 and Theorem 3 if p = 0, we have

vp(Qn) =
∑

d|n, ρ|d

µ(n/d)vp(Ud) = vp(Uρ)
∑
d′|nρ

µ(n/ρd′),

for all n ≥ 3, p ∤ n. The last sum is well-known to be equal to 1 if n/ρ = 1 and 0 if
n/ρ > 1. Hence we just proved the following lemma:

Lemma 9. We have Qn ∈ R for all n ≥ 1. Moreover, if p ∤ n, then p | Qn if and
only if n = ρU (p).

Suppose p ∤ n. It follows from Lemma 9 that Un has no primitive prime divisor
if and only if Qn is a constant in R, i.e., Qn ∈ A. Now, assuming n ≥ 3, we have
0 < k < n/2 only if n− k > n/2. Therefore, using the identities a2 + b2 = P 2 − 2Q
and ab = Q, we may write

Qn =
∏

0<k<n/2
(k,n)=1

(a− ζknb)(a− ζn−k
n b)

=
∏

0<k<n/2
(k,n)=1

(a2 + b2 − (ζkn + ζn−k
n )ab)

=
∏

0<k<n/2
(k,n)=1

(P 2 − θkQ), (5)

where θk = 2 + ζkn + ζ−k
n . We work on the above product formula for Qn to prove

our main theorem. Indeed, we prove that for all but finitely many n ≥ 3, this
product has a non-constant factor.

Lemma 10. Let α, β ∈ R×. We have α + α−1 = β + β−1 if and only if α = β or
α = β−1.

Proof. The “if” part is trivial. For the converse, note that the polynomial f(x) =
x2− (α+α−1)x+1 annihilates both α and β because α+α−1 = β+β−1. We have

f(α) = f(β) ⇐⇒ α2 − α(α+ α−1) + 1 = β2 − β(α+ α−1) + 1

⇐⇒ α2 − β2 = (α− β)(α+ α−1).
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If α ̸= β, we may divide by α− β and we obtain α+ β = α+ α−1, or equivalently,
α = β−1. □

Theorem 4. Let A be a unique factorization domain and R = A[T ]. Let U be a
regular Lucas sequence with non-zero parameters P,Q ∈ R such that one of P and
Q has positive degree. Assume n ≥ 2 and p ∤ n. Then Un has no primitive prime
divisor if and only if there exists a non-zero constant λ ∈ A such that one of the
following holds:

(1) n = 2, P = λ and deg (Q) ≥ 1,
(2) n = 3 and P 2 = Q+ λ,
(3) n = 4 and P 2 = 2Q+ λ,
(4) n = 6 and P 2 = 3Q+ λ.

In particular, we see that at most one of the above can hold.

Proof. The case n = 2 yields U2 = P = λ. This is clearly sufficient. For n ≥ 3,
it suffices to check whether Qn belongs to A by Lemma 9. By (5), we want to
show that at least one of the φ(n)/2 factors P 2 − θkQ has positive degree, where
0 < k < n/2 and (k, n) = 1. If deg(P 2) ̸= deg(Q), then deg(P 2 − θkQ) is equal to
the maximum of deg(P 2) and deg(Q), which is positive. Thus Qn ̸∈ A and Un has
a primitive divisor by Lemma 9. Assume 2 deg (P ) = deg (Q) and φ(n) > 2. Then
Qn has a least two factors of the form P 2 − θkQ. By contradiction, assume that
there exist i and j, i ̸= j, such that both

P 2 − θiQ and P 2 − θjQ

are constants, say λi and λj . We obtain Q(θj − θi) = λi − λj . However, we
have deg(λi − λj) ≤ 0 and deg(Q) ≥ 1, since P and Q are not both constants
by hypothesis. It follows that λi = λj and θi = θj . The latter is equivalent to
ζin + ζ−i

n = ζjn + ζ−j
n . By Lemma 10, we either have ζin = ζjn or ζin = ζ−j

n . Hence
n | i − j or n | i + j, but 0 < i, j < n/2 implies that i = j, a contradiction. It
follows that one and only one factor of Qn in (5) can be constant. Since φ(n) > 2,
φ(n) is even and Qn has φ(n)/2 factors in (5), we find that deg(Qn) ≥ 1. The
remaining cases for 2 deg (P ) = deg (Q) are integers n ≥ 3 such that φ(n) = 2, that
is, n = 3, 4 and 6. Note that we have the following:

U3 = P 2 −Q, U4 = U2(P
2 − 2Q), and U6 = U2U3(P

2 − 3Q).

By (4), we obtain that Q3 = P 2 − Q, Q4 = P 2 − 2Q, and Q6 = P 2 − 3Q. The
result follows. □

In conclusion, we obtained that the greatest integer n ≥ 1, p ∤ n, for which Un

has no primitive divisor is at most equal to 6. For each 1 ≤ n ≤ 6, we found the
conditions on P and Q for Un not to have a primitive divisor. Note that the method
we used is enough to obtain a similar result for sequences of the form (an− bn)n≥0,
with a, b ∈ R, and for Lehmer sequences in R.
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