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Résumé

Dans cette thèse, nous étudions les propriétés de divisibilité de l’ordre multiplicatif
modulo des nombres premiers. En particulier, nous nous intéressons à leurs extensions aux
suites de Lucas à valeurs entières ou polynomiales sur des corps finis. Cette étude prend
ses origines dans les travaux de Hasse sur la densité de Dirichlet des premiers pour lesquels
un entier fixé satisfait certaines conditions de divisibilité, modulo ces premiers. De plus,
ces résultats sont reliés à la conjecture d’Artin sur les racines primitives et à la distribution
des diviseurs premiers des suites récurrentes.

Pour les suites de Lucas, l’analogue de l’ordre multiplicatif est le rang d’apparition
des premiers. Étudier la divisibilité de ce rang par un entier fixé généralise le problème
posé par Hasse. Des formules explicites des densités sont connues pour les suites dont le
polynôme caractéristique est réductible, et des travaux récents dus à Sanna traitent le cas
irréductible pour certains entiers.

Dans le contexte des corps de fonctions globaux, nous étendons les résultats de Sanna
aux suites de Lucas polynomiales. Nous présentons des formules explicites de la densité
dans la plupart des cas, ainsi que des programmes SageMath pour calculer les différentes
constantes rentrant en jeu. Cela rend les résultats complètement explicites.

Enfin, pour les suites de Lucas usuelles à valeurs entières, nous démontrons des formules
explicites pour la densité asymptotique des premiers dont le rang d’apparition est divisible
par un entier pair, sous certaines hypothèses. Comme dans le cas des corps de fonctions,
nous présentons des programmes SageMath calculant explicitement les constantes utilisées.

Abstract

In this thesis, we study the divisibility properties of the multiplicative order modulo
primes. In particular, we investigate their extensions to polynomial Lucas sequences over
finite fields. This study has its origin in the work of Hasse on the Dirichlet density of
primes for which a fixed integer satisfies some divisibility condition modulo these primes.
Such results are naturally connected with Artin’s conjecture on primitive roots and with
the distribution of prime divisors in linear recurrences.

For Lucas sequences, the counterpart of the multiplicative order is the rank of appear-
ance of prime numbers. Studying the divisibility of this rank by a fixed integer generalises
Hasse’s problem. Explicit formulas for the density are known for sequences with reducible
characteristic polynomials, while recent results by Sanna cover the irreducible case for
certain integers.

In the context of global function fields, we extend Sanna’s results to polynomial Lucas
sequences. We provide closed-form formulas for the density in most cases, along with
SageMath computations for the constants that appear in these formulas. This makes our
results explicit.

Finally, for classical Lucas sequences, we give a closed-form formula for the natural
density of primes whose rank of appearance is divisible by even integers, under suitable
assumptions. As in the function field case, we provide SageMath programs to explicitly
compute our constants.
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Chapter 1

Introduction

1.1 Divisibility of the multiplicative order

In 1965 and 1966, Hasse published two papers [10,11] that were to become the first brick to
a much broader problem. He considered a square-free positive integer a, a prime number
l, and asked how many prime numbers p satisfy l | ordp(a), where ordp(a) is the order of
the reduction of a modulo p in the multiplicative group (Z/pZ)×. Call Na(l) the set of
such primes. Hasse proved that Na(l) has a Dirichlet density equal to

17

24
or

l

l2 − 1
,

depending on whether l = 2 and |a| = 2, or not respectively. To interpret these results,
recall that the Dirichlet density measures the proportion of primes lying in a given subset.
Thus, approximately 71% of all primes lie in N2(2), and about 66% in N3(2).

In a series of papers [38–42], Wiertelak studied in great detail the divisibility properties
of ordp(a), where a ∈ Z \ {±1, 0}. Most notably, he gave a complete answer to Hasse’s
original problem, replacing l by a positive integer d. Not only did he find a formula for
the Dirichlet density δa(d) of Na(d), but he proved an asymptotic formula for the counting
function Na(d, x) = Na(d) ∩ [1, x], where x > 1 is a real number. The following is a
restatement of Wiertelak’s theorem [40] given by Moree [21]:

Theorem 1.1. Let d ≥ 1 be an integer and x > 1. We have

Na(d, x) = δa(d)Li(x) +Oa,d

(
x(log log x)ω(d)+1

log(x)3

)
,

where ω is the prime-omega function and Li is the logarithmic integral function.

Moreover, the formulas Wiertelak gives show that δa(d) is always in Q>0. More recently,
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Pappalardi [27] took a different approach to this problem and obtained another equivalent
formula for the density. It was given in a more compact form by Moree [21], where a is
replaced by a rational g ∈ Q \ {±1, 0}, using a similar method. Write g = ±gh0 , where
g0 ∈ Q>0 is not a power and h ≥ 1 is an integer, and let d∞ be a supernatural number,
where the exponents in the prime decomposition of d∞ are equal to +∞. We have

δg(d) =
ϵ1

d(h, d∞)

∏
p|d

(
p2

p2 − 1

)
, (1.1)

where (h, d∞) is the gcd of h and d∞, and ϵ1 ∈ Q>0 is given explicitly by Moree. Other
related questions answered by Wiertelak concern two sets of prime numbers: those for
which d∥ordp(a), and those with (ordp(a), n) = d, where n ≥ 1. Note that d∥ordp(a)
means vl(d) = vl(ordp(a)) for all primes l | d, where vl is the l-adic valuation.

The motivations behind Hasse’s and Wiertelak’s results come from the Artin’s conjec-
ture on primitive roots. Stated by Artin in 1927, the conjecture says that if a is an integer
different from −1 and from a square, then there are infinitely many primes p for which a is
a primitive root modulo p. That is, ordp(a) = p−1 for infinitely many primes. By studying
the distribution of primes p for which ordp(a) satisfies certain divisibility conditions, they
gave a first quantitative understanding of how ordp(a) behaves. See [22] for a survey on
Artin’s conjecture.

Another motivation is found in prime divisors of integer sequences. For a linear re-
cursion X = (xn)n≥0 ⊂ Z, we say that a prime p divides X, denoted by p | X, if there
exists n ≥ 0 such that p | xn. When X is a linear recurrence of order exactly 2, Ward [36]
showed that there are infinitely many primes p such that p | X. This was later generalised
by Stephens [32, 33], who proved, under the generalised Riemann hypothesis (GRH), that
this set has a positive density for a certain kind of recurrent sequences of order 2. His
work was extended by Moree and Stevenhagen [24] to all second-order recursions using a
clever generalisation of Artin’s conjecture on primitive roots. Although these results are
conditional, there are examples of sequences for which the Dirichlet density can be found
unconditionally. This is the case of sequences X defined by

xn = an + bn,

for all n ≥ 0, where a, b ∈ Z \ {±1, 0}. The set of primes p dividing X is equal, up to
possibly finitely many exceptions, to Ng(2), where g = a/b, whose density is given by (1.1).
They are not the only sequences that can be linked to the work of Hasse and Wiertelak.
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For instance, if d is a prime number and X is defined by

xn =
d−1∑
k=0

ankbn(d−1−k) =
adn − bdn

an − bn
, (1.2)

for all n ≥ 1, then the associated prime density is δg(d). Here, note that X is a linear
recursion of order d. This example gives us some insight on the case of higher-order
recursions, for which much less is known about their prime divisors. Recent progress
by Järviniemi [13] shows that, under the generalised Riemann hypothesis, higher-order
recursions have a positive lower density of prime divisors.

1.2 Generalisation to Lucas sequences

The Fibonacci sequence is probably the best-known example of a second-order recurrence.
It is denoted by F , and is defined by F0 = 0, F1 = 1 and Fn+2 = Fn+1 + Fn for all n ≥ 0.
With it comes the sequence L = (Ln)n≥0 of Lucas numbers, defined by the same recursion
and initial terms L0 = 2 and L1 = 1. In 1985, Lagarias [16] proved that the set of primes
p such that p | L has density 2/3. He made use of Hasse’s method [10, 11] and the link
with sequences of the form an + 1. This makes sense as

Ln = ϕn + ϕ̄n,

for all n ≥ 0, where ϕ = (1 +
√
5)/2 is the golden ratio and ϕ̄ its quadratic conjugate.

Naturally, we can ask what replaces the multiplicative order of a modulo p in this instance.
We define the rank of appearance, ρF (p), of p in F as the least positive integer n such that
p | Fn. This is analogous to the multiplicative order. In particular, we have p | L precisely
when 2 | ρF (p). It is only natural that the divisibility problem for the multiplicative order
extends to primes whose rank of appearance in F is divisible by a fixed integer d ≥ 2.
This has been studied by Cubre and Rouse [8], who obtained a complete formula for the
Dirichlet density of such primes, namely

c(d)

d

∏
p|d

(
p2

p2 − 1

)
,

where c(d) is equal to 1, 5/4, or 1/2 if, respectively, 10 ∤ d, d ≡ 10 (mod 20), or 20 | d.
Given two non-zero integers a1, a2 ∈ Z, we define the Lucas sequence U = (Un)n≥0

with parameters a1 and a2. It satisfies the initial conditions U0 = 0, U1 = 1, and

Un+2 = a1Un+1 − a2Un,
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for all n ≥ 0. As for the Fibonacci sequence F = U(1,−1), one defines the rank of
appearance of a prime p in U , denoted by ρU (p), as the least positive integer n such that
p | Un. Of course, we may ask whether the Dirichlet density of primes p for which d | ρU (p),
where d ≥ 2, exists and can be found explicitly for all Lucas sequences. This turns out to
be a direct generalisation of Hasse’s original problem. Indeed, one has ρU (p) = ordp(a/b)

for sequences U such that

f(X) = X2 − a1X + a2 = (X − a)(X − b) (1.3)

is reducible over Z. In that case, the density is equal to δg(d), where g = a/b, which was
explicited in (1.1). This generalisation to Lucas sequences allows us to replace a, b ∈ Z
by quadratic conjugates a, b ∈ L := Q(

√
∆), where ∆ = a21 − 4a2, whenever f(X) is

irreducible.
The case d = 2 has been studied in great detail by Moree and Stevenhagen [20,23]. They

gave a complete description of the density values when the root a is a fundamental unit
of the real quadratic field Q(

√
∆). Recently, Sanna [30] made an important contribution

to this problem. Let ∆0 be the square-free part of ∆. Assuming that d is odd and not
divisible by 3 if L ̸= Q(ζ3), where ζ3 is a primitive third root of unity, he showed that the
Dirichlet density of the primes p for which d | ρU (p) exists and is equal to

δU (d) =
1

d

(
1

(h, d∞)
+ ηU (d)

)∏
p|d

(
p2

p2 − 1

)
,

where ηU (d) = 0 if ∆ > 0, or ∆0 ̸≡ 1 (mod 4), or ∆0 ∤ d∞, and

ηU (d) =
(h, d∞)

[(h, d∞),∆0/(d,∆0)]2
,

otherwise. Prior to Sanna’s result, some progress had already been made in some other
cases. In 2013, Ballot considered Lucas sequences such that L is equal to a cyclotomic
field. That is, when ∆ is minus a square, or minus three times a square. Using clever
decompositions of U into products of other sequences, which are only feasible when L is
cyclotomic, he found the value of δU (d) for d ∈ {2, 4} and d ∈ {3, 6}, when L = Q(i)

and L = Q(ζ3) respectively, where i2 = −1. This was done under some fairly general
hypotheses on the parameter a2.

The motivation for studying prime divisors of sequences is natural, as it mimics the case
mentioned in Section 1.1. Indeed, we can replace a and b in (1.2) by quadratic conjugates.
The sequences obtained lie in Z, and the density of their prime divisors is equal to δU (d),
for d a prime number. This can actually be extended to composite integers, where the
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density is obtained via the Möbius sum

1−
∑
u|d

µ(u)δU (u),

where µ is the Möbius function. Another question, which provides a second motivation,
is whether there exists a generalisation of Artin’s conjecture to Lucas sequences with an
irreducible characteristic polynomial. In a series of papers, Laxton [18, 19] constructed a
group G(f), where elements are equivalence classes of sequences sharing the same charac-
teristic polynomial f , defined as in (1.3). The group operation of G(f) has the property
of preserving prime divisibility. In the first paper, Laxton restated the Artin primitive
root conjecture via quotients of G(f) by certain normal subgroups. This allowed for a
first generalisation to the irreducible case. From an arithmetic point of view, the Artin
conjecture for Lucas sequences asserts that, if a/b is not a square, there are infinitely many
primes p for which ρU (p) is maximal, that is,

ρU (p) = p−
(
∆

p

)
,

where (∆/p) is the Legendre symbol of ∆ modulo p. This links ρU (p) to another behaviour
of the multiplicative order. Indeed, as ordp(a) divides p − 1, the same is true for ρU (p),
which divides p− (∆/p).

1.3 The function field case

There is a well-known analogy between Z and the ring of polynomials A = Fq[T ] with
positive characteristic p. Both are Euclidean rings in which prime numbers and monic
irreducible polynomials are prime elements. In this setting, the analogue of Q is the
fraction field of A, that is, K := Fq(T ). In Sections 1.1 and 1.2, we discussed the problem
of the divisibility of the rank of appearance of Lucas sequences. It is natural to ask whether
a similar investigation can be conducted for sequences defined over A.

In 2006 and 2007, Ballot [2, 3] considered the Lucas sequence U = (Un)n≥0 ⊂ A with
parameters a1 = T + 1 and a2 = T . That is, the sequence defined by

Un =
Tn − 1

T − 1
,

for all n ≥ 0. As in Section 1.2, we define ρU (P ) as the rank of a prime P in U , that
is, P is a monic and irreducible polynomial in A. In his papers, Ballot computed the
density of the set of primes P whose rank of appearance is divisible by a prime number.
Some remarkable properties of this sequence even allowed him to prove his results using
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an elementary method. Note that, in contrast to the classical case, Ballot did not use the
Dirichlet density, but another density notion referred to as the d3-density. Let S ⊂ A be a
set of primes and S(N) be the number of P ∈ S with polynomial degree N , N ≥ 1. Then,
the d3-density of S is defined by

d3(S) = lim
N→+∞

1

N

N∑
n=1

S(n)

qn/n
,

when the limit exists. In discussing the different notions of prime density over Fq(T ),
Ballot [4] showed evidence that the d3-density is a close analogue to the natural density of
positive integers. Moreover, the existence of a d3-density for a set S, implies the existence
of its Dirichlet density. In that case, their value is the same. This confirms the d3-density
as a stronger notion of density than the Dirichlet density.

To our knowledge, Ballot’s papers are the only instance in the literature that study the
divisibility problem of the rank of appearance in this context. We believe that this can
be explained by Artin’s conjecture on primitive roots being settled in the function field
setting. Without this motivation, fewer weaker problems have been studied to get closer
to the conjecture’s validity. Let a ∈ K \ Fq, a not an l-th power for all l | q − 1. The
conjecture states that there exist infinitely many primes P ∈ A such that a is a primitive
root modulo P , that is, a has order qN − 1 in (A/P )×. It was first proven by Bilharz [6]
under the generalised Riemann hypothesis for function fields, which was later proved by
Weil [37]. In his proof, Bilharz shows that the set of primes P that have a as a primitive
root has positive Dirichlet density. Another proof was given in 1994 by Pappalardi and
Shparlinski [28] by estimating the number of primes P ∈ A of degree n ≥ 1 that satisfy
the conjecture. More recently, Kim and Murty [15] managed to prove Artin’s conjecture
without using the generalised Riemann hypothesis for function fields.

1.4 Thesis outline

The main purpose of this thesis is to extend Sanna’s results [30] to polynomial Lucas
sequences over the finite field Fq of q elements. The idea is to adapt his method to the
function field setting and find a closed-form formula for the d3-density of primes P ∈ A =

Fq[T ] whose rank of appearance is divisible by a fixed integer d ≥ 1. We do not restrict
ourselves to odd integers, and aim for a general characterisation of the density values. This
generalises Ballot’s results [2, 3] to other Lucas sequences. However, unlike him, we are
unable to prove a general result by elementary means. Additionally, one of our objectives is
to make progress on the divisibility problem for classical Lucas sequence in Z. We seek to
find the Dirichlet density of prime numbers p whose rank of appearance is divisible by an
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even integer d ≥ 1 when Q(
√
∆) is not a cyclotomic field, where ∆ was defined in Section

1.2. This would leave only the cyclotomic cases to be studied. Throughout this thesis, we
refer to these types of problems under a common name: the order problem.

In Chapter 2, we define Lucas sequences in rings of integers of global fields. This is
where we make our first essential assumptions on Lucas sequences for the thesis. Moreover,
we give various properties of the rank of appearance.

In the third chapter, we consider various notions of density that were defined and
compared in a discussion by Ballot [4]. For each notion, we study the existence of the
density of the set of primes P ∈ A such that d | ρU (P ), where ρU (p) is the rank of
appearance of P in a given Lucas sequence U ⊂ A and d is a positive integer. We show
that the Dirichlet and d3 densities always exists in Theorems 3.18 and 3.23, and that the
others do not in Theorem 3.31. Doing so, we obtain a first formula for the d3-density. This
chapter includes many preliminaries on field extensions of K = Fq(T ). In particular, we
study constant field extensions and Kummer extensions. For the latter, we find an exact
formula for the field degree of Kummer extensions of rank 1 over K.

Chapter 4 complements Chapter 3, in which we obtained a first formula for the d3-
density. This formula involves an infinite series, which, as such, is not easy to compute. If
U has reducible characteristic polynomial, then Theorem 4.12 provides a nicer formula for
the density. However, we had to make assumptions on the constant field of our Kummer
extensions to prove it. If U has irreducible characteristic polynomial f(X), then we are
able to find a closed-form formula in almost all cases. The only cases left occur when the
splitting field of f(X) is Fq2(T ). This is the only case in which we adjoin a root of unity
to K, which parallels the case left aside by Sanna [30] in his theorem. At the end of this
chapter, we provide a few algorithms and their SageMath [35] implementations in order to
compute all the constants defined throughout Chapters 3 and 4. This makes our results
explicit.

In Chapter 5, we come back to classical Lucas sequences U ⊂ Z. Recall that ∆ is the
discriminant of the characteristic polynomial of U . Under the assumption that Q(

√
∆) is

not a cyclotomic field, we derive a closed-form formula for the Dirichlet density of prime
numbers p whose rank ρU (p) is divisible by an even integer d ≥ 1. We use the method of
Chapter 4. Our results depend on various constants. Thus, as in the previous chapter, we
provide algorithms to compute these constants, with their SageMath implementations.
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Chapter 2

Lucas sequences in integer rings

This first chapter is an introduction to Lucas sequences. We reprove classical properties
about those sequences that are already known over Z. This thesis is about prime densities
for primes in both Z and Fq[T ], where Fq is the finite field of q elements. Therefore, we
generalise those results to rings of integers of global fields.

Section 2.1 is dedicated to basic definitions of our setting and of Lucas sequences. This
is a short section in which we prove various properties of those sequences via elementary
methods.

In the second section, we study the rank of appearance of primes in a Lucas sequence.
That is, for a fixed prime ideal P , the least integer n ≥ 1 such that P divides the n-th term
of the sequence. We prove classical properties of the rank known as the laws of appearance,
and of repetition.

Throughout this chapter, the letter n denote a non-negative integer and the letter p
zero or a prime number. We let A denote the ring of integers of a global field K with
characteristic p. We write K̄ for an algebraic closure of K and ζn for a primitive n-th root
of unity in K̄.

2.1 Definitions and first properties

Let a1, a2 ∈ A be non-zero. We consider the polynomial f(X) = X2 − a1X + a2 in A[X]

with roots a, b ∈ K̄ and discriminant ∆ := a21 − 4a2.

Definition 2.1. A Lucas sequence U = (Un)n≥1 with parameters a1, a2 ∈ A is a second
order linear recursion with initial terms U0 = 0 and U1 = 1, and with characteristic
polynomial f(X), that is, such that Un+2 = a1Un+1 − a2Un for all n ≥ 0.

However, we prefer writing Lucas sequences in their Binet formula. We have two cases.
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If a = b, then Un = nan−1 for all n ≥ 0, and otherwise, we have

Un =
an − bn

a− b
,

for all n ≥ 0. This is the latter form that will be of interest throughout this thesis.
We distinguish two kinds of Lucas sequences: the degenerate and non-degenerate Lucas
sequences. If Un = 0 for some n ≥ 1, then U is called degenerate. Therefore, a Lucas
sequence that is non-zero for all n ≥ 1 is non-degenerate. Let L = K(a) be the splitting
field of f(X). The following lemma shows that degeneracy can be expressed as a relation
between the roots of the characteristic polynomial:

Lemma 2.2. A Lucas sequence U is degenerate if and only if we have a = ζb for some
root of unity ζ ∈ L. (ζ ̸= 1 if p = 0.)

Proof. If a = b, then Un = nan−1 ̸= 0 unless p > 0 and p | n. If a ̸= b, then

Un = 0 ⇐⇒ an − bn

a− b
= 0 ⇐⇒

(a
b

)n
= 1 ⇐⇒ a = ζb,

for some n-th root of unity ζ ∈ L.

We assume that U is a non-degenerate sequence for the rest of this chapter, as there is
much more to say in this case. Moreover, in the following chapters, we study the divisibility
by primes of Lucas sequences, since the degenerate case is straightforward.

Proposition 2.3 (Divisibility sequence). For all m,n ≥ 0, we have Un | Umn.

Proof. If a = b, then the result follows directly from Un = nan−1. Otherwise, we have

Umn

Un
=
amn − bmn

an − bn
.

Let a′ = an and b′ = bn. We see that the above quotient is the m-th term of the Lucas
sequence U ′ with parameters a′ + b′ and a′b′. We only need to show that the parameters
are in A. But we have a′b′ = (ab)n = an1 . Also, a′ + b′ = an + bn is the n-th term of the
sequence V = (Vn)n≥0 defined by V0 = 2, V1 = a1, and

Vn+2 = a2Vn+2 − a2Vn,

for all n ≥ 0. We see from the recursion that Vn ∈ A.
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2.2 The rank of appearance of primes

Let P ∈ A be a prime ideal. In this section, we study the behaviour of primes in Lucas
sequences. The object of interest is called the rank of appearance, or just the rank as a
shorthand, and is defined in the following:

Definition 2.4. The rank of appearance of P in U , denoted by ρU (P ), is the least positive
integer n ≥ 1 such that P | Un, if it exists. Otherwise, we write ρU (P ) = +∞.

Let OL denote the ring of integers of L, i.e., the integral closure of A in L. The next
lemma shows how the rank can be seen as the multiplicative order of γ := a/b modulo
some prime ideal of L. As a consequence, we find that the condition P ∤ a2 is sufficient for
the rank of P to exist. We let NP = |A/P |.

Lemma 2.5. Let P ∤ 2∆a2 be prime and p | P be a prime ideal of OL. Then, ρU (P ) is
equal to the multiplicative order of γ modulo p, and ρU (P ) | NP − ϵP , where

ϵP =

1, if P splits in L;

−1, if P is inert in L.

Proof. We prove that P | Un if and only if γn ≡ 1 (mod p), where n ≥ 1. Note that
reducing γ modulo p makes sense as P ∤ a2 ensures that p ∤ ab. Since p is lying above P ,
we have P | Un only if p divides

Un =
an − bn

a− b
=
an − bn√

∆
.

This makes sense because P ∤ ∆, and thus p ∤ ∆ as well. Hence an ≡ bn (mod p), which is
equivalent to γn ≡ 1 (mod p). For the converse, we saw that γn ≡ 1 (mod p) if and only
if we have p | Un. If L = K, or L ̸= K and P is inert, then the result follows directly.
For the other primes, since L/K has degree two, we know it is Galois. We have p | Un if
and only if σL(p) | Un, where σL is the non-trivial automorphism of L/K. It follows that
P | Un because POL = p ∩ σL(p). Finally, the result follows by minimality of the rank of
appearance of P and of the order modulo p.

Now, for the second part of the lemma, we note that if p ̸= 2, then a prime of K is
ramified in L if and only if it divides 2∆. (See [7, Lemma 5] for reference.) If p = 2, then
for any prime P ∈ A, the residue field A/P has characteristic p = 2. We have

f(X) = X2 − a1X + a2 ≡ (X + α)2 (mod P )

if and only if a2 ≡ α2 (mod P ) and a1 ≡ 0 (mod P ), by identifying the coefficients on
both sides. This is equivalent to a ≡ b (mod P ), that is, P | ∆ = (a − b)2. By the
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Dedekind-Kummer theorem, it follows that P ∤ 2∆ ensures that P is unramified in L.
Therefore, the Frobenius element σp := (L/K, p) corresponding to a prime p | P exists.
We have σp = id if ϵP = 1, and σp = σL otherwise. By definition, we have

σp(γ) = γNP (mod p) and σp(γ) = γϵP .

Hence γNP−ϵP ≡ 1 (mod p), that is, P | UNP−ϵP by the above. The claim follows by the
minimality of the multiplicative order.

Corollary 2.6. Let P ∤ ∆a2 be prime and n ≥ 1. Then, P | Un if and only if ρU (P ) | n.

Proof. This is a direct consequence of Lemma 2.5 and the rank being the multiplicative
order of γ modulo p | P .

Definition 2.7. The unique integer ιU (P ) such that ρU (P ) · ιU (P ) = NP − ϵP is called
the index of appearance of P in U .

Lemma 2.8. Let U and U ′ be non-degenerate Lucas sequences. Assume that γ is the
quotient of the roots of both f(X) and f ′(X), their respective characteristic polynomials.
Then, there exists c ∈ K× such that Un = cn−1U ′

n for all n ≥ 0.

Proof. Let f(X) = X2 − a1X + a2 and f ′(X) = X2 − A1X + A2. We denote by a, b ∈ L
the roots of f , and α, β ∈ L those of f ′. We have γ = a/b = α/β, and

γ + γ−1 =
a21
a2
− 2 =

A2
1

A2
− 2.

The latter yields a2/A2 = (a1/A1)
2. The result follows with c = a1/A1.

We end this chapter with a formula that links ordp(γ) to ordp(−γ), where ordp(γ) is
the order of the reduction of γ modulo p in (OL/p)

×. In particular, by Lemma 2.5, it
links ρU (P ) to ordp(−γ). Although simple, this observation plays an important role in our
work, as we will see at the beginning of Chapters 4 and 5. The same argument was used
by Wiertelak [40].

Lemma 2.9. Assume p ̸= 2. Let p be a prime ideal of OL. We have

ordp(γ) =


ordp(−γ)/2, if 2 ∤ ordp(γ);

2ordp(−γ), if ordp(γ) ≡ 2 (mod 4);

ordp(−γ), if 4 | ordp(γ).

Proof. Let ρ = ordp(γ). Then, since

(−γ)ρ ≡ (−1)ρ (mod p),



13

we see that 2ρ = ordp(−γ) if ρ is odd. If ρ ≡ 2 (mod 4), then (−γ)ρ/2 ≡ 1 (mod p). We
claim that ρ/2 is the least integer t ≥ 1 such that (−γ)ρ/2 ≡ 1 (mod p). If it is not, then
there exists m < ρ/2 such that (−γ)m is 1 modulo p, which implies that γ2m ≡ 1 (mod p),
a contradiction. If 4 | ρ, then (−γ)ρ/2 = γρ/2 ≡ −1 (mod p). The result follows.

Remark 2.10. The order ordp(−γ) corresponds to the rank of appearance ρU (P ) for the
Lucas sequence U(∆,−a2∆).
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Chapter 3

Existence of densities for the order
problem

With the notation of Chapter 2, we let q be a power of the prime p. We write K = Fq(T )

and A = Fq[T ]. Let U be a Lucas sequence with non-zero parameters a1, a2 ∈ A. This
chapter is dedicated to the study of the rank of appearance ρU (P ) of primes P ∈ A,
which are monic and irreducible polynomials over Fq. More precisely, we ask what is the
proportion of primes that have their rank divisible by a fixed integer?

This order problem has been studied by many authors in the classical case [1, 10, 11,
16,20,23,30,40]. However, it was only studied by Ballot [2,3] in the function field setting,
where he considered the Lucas sequence defined by

Un =
Tn − 1

T − 1
,

for all n ≥ 0, and d a prime number. We aim to generalise his results in Chapters 3 and 4
to d a composite integer and U an arbitrary Lucas sequence.

Studying the rank of primes in Lucas sequences is of interest only if there are primes
dividing Un at some n ≥ 1. Therefore, for U to truly be a polynomial sequence, we assume
that a1 and a2 are not both constants in A. Throughout this chapter, we also assume that
γ = a/b is not a constant in L = K(a). This ensures that U is non-degenerate, that is, Un

is non-zero for all n ≥ 1. Note that γ ̸∈ FL := F̄q ∩ L is equivalent to a21/a2 not being a
constant in Fq. This is straightforward using that γ + γ−1 = a21/a2 − 2.

Let d ≥ 2 be an integer. We study the set Rq(γ, d) of primes P ∈ A such that ρU (P )
exists and d | ρU (P ), and where P unramified in L. By Lemma 2.5 and its proof, the
condition P ∤ ∆a2 is sufficient for ρU (P ) to exist and for P not to ramify in L. Therefore,
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we define the set precisely as

Rq(γ, d) = {P ∈ A prime : P ∤ ∆a2 and d | ρU (P )}.

Note that the dependence on γ comes from Lemma 2.5, which states that ρU (P ) is the
order of γ modulo any prime lying above P . However, there are many sequences associated
with the same γ. To make sense of the definition of Rq(γ, d), note from Lemma 2.8 that
any two sequences U and U ′ associated with the same γ satisfy Un = cn−1U ′

n for all n ≥ 0,
for some c ∈ K×. It follows that the set of primes with d | ρU (P ) differs only by finitely
many elements from the set of primes with d | ρU ′(P ). Hence, they have the same density,
equal to the density of Rq(γ, d).

In addition, note that any γ ∈ L with norm equal to 1 can be associated with a Lucas
sequence. If p ̸= 2 and γ = (u+v

√
∆)/d ∈ L, for some u, v, d ∈ A, then γ can be associated

with the Lucas sequence U with parameters a1 = 2(u+ d) and a2 = 2d(u+ d). The same
is true in even characteristic if we consider L = K(a), where a is a root of an irreducible
polynomial X2 + A1X + A2. If γ = (u+ av)/d, then it can be associated with the Lucas
sequence U(A1v, dA1v). In this thesis, we take the point of view of Lucas sequences and
the notation thereof.

Now, note that we are not directly studying Rq(γ, d) itself, but rather two disjoint
subsets R+

q (γ, d) and R−
q (γ, d). The subset R+

q (γ, d) is made of primes P ∈ Rq(γ, d) that
split completely in L, while R−

q (γ, d) is made of those that are inert in L.
To find the proportion of primes in R+

q (γ, d) and R−
q (γ, d), we use particular notions of

prime density on A. Let S ⊂ A be a set of monic irreducible polynomials and S(N) be the
number of P ∈ S with polynomial degree N , where N ≥ 1. The most common densities
are the d1 and δ densities defined, when they exist, by the limits

d1(S) = lim
N→+∞

S(N)

P+(N)
and δ(S) = lim

s→1+

∑
P∈S NP

−s∑
P∈P+

NP−s
.

The letter P+ denotes the set of monic irreducible polynomials in A and NP = qdeg(P ) is
the norm of P . The quantity P+(N) is usually denoted IN and is given by the sum

IN =
1

N

∑
d|N

µ(d)qN/d.

The number δ(S) is called the Dirichlet density of S and is the analogue of the Dirichlet
density used for rational prime numbers. In a discussion about densities on A, Ballot [4]
defines five densities d1, d2, d3, d4 and δ, and concludes two things. Denoting by δ1 =⇒ δ2

the fact that any set of primes in A having a δ1-density equal to d must have a δ2-density
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equal to d, [4, Theorem A] states the following:

d1 ⇐⇒ d2 =⇒ d3 =⇒ d4 ⇐⇒ δ.

Moreover, d3 is not equivalent to d2, nor d4. In conclusion, there are three distinct densities
to be considered. In this paper, we consider d1, δ and the d3-density defined by the limit

d3(S) = lim
N→+∞

1

N

N∑
n=1

S(n)

In
= lim

N→+∞

1

N

N∑
n=1

S(n)

qn/n
,

when it exists. Note that the second equality follows from the classical asymptotic formula
In = qn/n + O(qn/2/n) as n tends to infinity. Secondly, although there is some evidence
of d1 being an analogue of the natural density commonly used on N, Ballot concludes that
d3 seems to be a better candidate. Indeed, various sets of rational prime numbers that are
known to have natural density have analogues in A that do not have d1-density but have
d3-density. In this work, we prove that the set Rq(γ, d) does not usually have d1-density,
but always has d3-density, thus confirming d3 as a strong analogue of the natural density.
Our work is based on the method used by Pappalardi [27], Moree [21], and Sanna [30,31],
and on the elementary approach taken by Ballot [2, 3].

From the definition of the d3-density, we see that we will need to estimate R±
q (γ, d,N),

the number of primes in R±
q (γ, d) of degree N . The following analogue of the Chebotarev

density theorem, see [9, Proposition 6.4.8], is our main tool for this chapter:

Theorem 3.1. Let L/K be an extension of global function fields with Galois group G and
respective constant fields Fqn and Fq. Let C ⊂ G be a conjugacy class and k be a positive
integer such that σ|Fqn

= τk|Fqn
for all σ ∈ C, where τ is a Frobenius element of Fqn/Fq.

For all N ≥ 1, we consider the counting function

CN (L/K, C) = #{P ∈ PK : deg(P ) = N and (L/K,P ) = C},

where PK denotes the set of primes of K unramified in L and (L/K,P ) denotes the Artin
symbol of P . If N ̸≡ k (mod n), then CN (L/K, C) = 0. If N ≡ k (mod n), then∣∣∣∣CN (L/K, C)− #C

m

qN

N

∣∣∣∣ ≤ 2#C
mN

(
(m+ gL)q

N/2 +m(2gK + 1)qN/4 + gL + dm
)
,

where m = [L : FqnK] and d = [K : Fq(T )], and gF denotes the genus of a field F .

Our first section is divided into three subsections. In Subsection 3.1.1, we prove neces-
sary and sufficient conditions for L(γ1/n)/L to be a constant field extension, where n ≥ 1

and γ ∈ L. In the second subsection, we study Kummer extension of function fields. We
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prove an exact formula for the degree of Ln,d = L(ζn, γ
1/d), where ζn ∈ F̄q is a primitive

n-th root of unity and d | n is a positive integer. Moreover, we give a bound of the genus
of Ln,d and conditions for the splitting of certain primes in Ln,d. In Subsection 3.1.3, we
give a formula for the multiplicative order modulo integers.

In Section 3.2, we prove the existence of the d3-density of R+
q (γ, d). We first study

the number of primes in R+
q (γ, d) with fixed degree. We are able to apply Theorem 3.1 to

obtain an asymptotic formula of the form

|R+
q (γ, d,N)− δ+q (γ, d,N) · qN/N | ≪ f(N),

for some function f , and where δ+q (γ, d,N) is expressed in terms of degrees of Kummer
extensions. Then, we prove our main result Theorem 3.18. The proof relies on a technique
used by Ballot [2, 3] that consists on partitioning N into adequate disjoint arithmetic
progressions. For all n ≥ 1 in the same arithmetic progression, we find that δ+q (γ, d,N)

is a constant independent of n, thus simplifying most calculations. The same is done in
Section 3.3 for R−

q (γ, d) to find δ−q (γ, d,N). In both cases, we find a series representation
of their density.

In Section 3.4, we prove that the d1-density of Rq(γ, d) only exists in the trivial cases.
By the equivalence mentioned above, this also holds for the d2-density.

3.1 Preliminary results

In the section, we prove preliminary results to the study of Rq(γ, d). We first give a
necessary and sufficient condition for an extension of the form L(γ1/n) to be an extension
of the field of constants of L. In the second subsection, we prove exact formulas for the
degrees involving Kummer extensions Ln,d := L(ζn, γ

1/d). Moreover, we show that the
genus of Ln,d is bounded above by a constant times a certain field degree. Finally, we
evaluate the multiplicative order of q ≥ 2 modulo some useful integers.

3.1.1 On constant field extensions

Recall that L/K is an algebraic extension of function fields which is either K or a quadratic
extension of K. We fix ∞ ⊂ L a prime ideal of degree 1, i.e., such that [O∞/∞ : FL] = 1,
where O∞ is the valuation ring of ∞ in L and FL = L ∩ F̄q. By [26, Theorem 2.2.9], the
completion of L with respect to the valuation v∞ is the field L∞ := FL((π)) of Laurent
series in π, a uniformizer of O∞. Given x ∈ L, there exist n0 ∈ Z and (ai)i≥0 ⊂ FL such
that

x = πn0
∑
i≥0

aiπ
i,
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where x is seen as an element of L∞. We say that x is monic when a0 = 1. The monic
part of x, denoted x̃, is defined by x̃ := a−1

0 x. The coefficient a0 is called the sign of x
and acts as an analogue of the leading coefficient for polynomials. We denote it by sgn(x).
We use this construction throughout the chapter, starting with the Theorem 3.3, which
provides a necessary and sufficient condition for a radical extension of L to be a constant
field extension. We first define the latter, as well as so-called geometric extensions.

Definition 3.2. Let K/Fq be an algebraic function field and L/Fqn be an extension of K,
where n ≥ 1. We say that L/K is

(1) a constant field extension if L = FqnK; or

(2) a geometric extension if F̄q ∩ L = F̄q ∩K.

Note that an extension of function fields does not necessarily have to be constant or geo-
metric.

Theorem 3.3. Let γ ∈ L×. Then, the extension L(γ1/n)/L is a constant field extension
if and only if γ = µbn for some µ ∈ F×

L and b ∈ L×.

Proof. Let l be a prime. We first prove the result for n = lk by induction on k ≥ 1. The
base case is identical to the proof of [12, Lemma 3.3], so we may skip a few details.

Assume that L(γ1/l)/L is a constant field extension. If L(γ1/l) = L, then γ = bl for
some b ∈ L. Next, if L(γ1/l) is a proper extension of L, we let M := L(γ1/l) ∩ F̄q. Thus,
we have M ̸= L ∩ F̄q and ML ⊂ L(γ1/l). Moreover, since L(γ1/l)/L has prime degree l,
we find that L(γ1/l) = ML. An extension of finite fields is Galois, hence ML/L is Galois
as well. In particular, the polynomial X l − γ splits completely in ML and, by Kummer
theory, this shows that L(ζl) ⊂ML. Since [L(ζl) : L] divides both l−1 and l, we conclude
that L(ζl) = L. It follows that FL := L ∩ F̄q contains an element ν that is not an l-th
power. Therefore, X l − ν is irreducible over L and ML = L(β), where β ∈ F̄q is an l-th
root of ν. The family {1, β, . . . , βl−1} forms an L-basis of L(γ1/l), and

γ1/l =

l−1∑
i=0

biβ
i,

for some bi ∈ L. Consider σ ∈ Gal(L(γ1/l)/L). By Kummer theory, σ(γ1/l) = ζkl γ
1/l for

some 0 ≤ k ≤ l − 1. Similarly, we have σ(β) = ζml β for some 0 ≤ m ≤ l − 1. Hence

σ(γ1/l) = ζkl

l−1∑
i=0

biβ
i = σ

(
l−1∑
i=0

biβ
i

)
=

l−1∑
i=0

biζ
mi
l βi.



20

By linear independence of {1, β, . . . , βl−1}, we obtain biζ
k
l = biζ

mi
l for all 0 ≤ i ≤ l − 1.

Since only one i satisfies k ≡ mi (mod l), call it i0, we conclude that bi = 0 for all i ̸= i0.
Therefore, we have γ1/l = bi0β

i0 , that is, γ = µbl, where µ = βi0l = νi0 and b = bi0 .
Assume the result holds for some k ≥ 1 and L(γ1/l

k+1
)/L is a constant field extension.

Then, L(γ1/l
k
)/L is a constant field extension. Hence γ = µbl

k
for some µ ∈ FL and b ∈ L,

by the induction hypothesis. It follows that γ̃ = b̃l
k
. Moreover, since L(γ1/l

k+1
)/L is a

constant field extension, we see that this is also the case for L(γ̃1/l
k+1

) = L(b̃1/l) over L.
By the base case, there exists u ∈ FL and c ∈ L such that b̃ = ucl, that is, b̃ = c̃l because
b̃ is monic. Hence γ = λγ̃ = λc̃l

k+1
and the proof by induction is complete.

Now, write n = q1 · · · qs for some s ≥ 2, where the qi’s are powers of distinct primes.
By the above, we have

γ = µ1b
q1
1 = · · · = µsb

qs
s and γ̃ = b̃q11 = · · · = b̃qss ,

for some bi ∈ L× and µi ∈ F×
L . Since the qi’s are powers of distinct primes, we see that b̃1

is a qi-th power in L for all 1 ≤ i ≤ s. Thus, γ̃ = bn for some b ∈ L×.

Note that this theorem can be generalised to finite algebraic extensions of Fq(T ). For
our purpose, only the quadratic case is needed.

3.1.2 On Kummer extensions

In this subsection, we prove an exact formula for the degree of Ln,d := L(ζn, γ
1/d) over the

field Fn,dK, where Fn,d = F̄q ∩ Ln,d is the constant field of Ln,d, d, n are positive integers
prime to p such that d | n, and ζn is a primitive n-th root of unity. Moreover, the genus
of Ln,d is showed to be bounded above by [Ln,d : Fn,dL] times a constant. Finally, we give
properties of the Frobenius element of primes p ∈ Ln,d lying above certain primes P ∈ K.
We use the following theorem in order to compute the field degrees:

Theorem 3.4. Let K be a field and a ∈ K×. Then Xn − a is irreducible over K if and
only if a ̸∈ (K×)l for all l | n and a ̸∈ −4(K×)4 if 4 | n.

Proof. See [17, Theorem 9.1].

Definition 3.5. We write γ = µγ̃h0 , where γ̃0 ∈ L is monic, µ = sgn(γ) ∈ FL and h is the
largest integer t ≥ 1 such that γ̃ is an t-th power in L.

Lemma 3.6. The largest v | d such that Ln,v/L is a constant field extension is (d, h).
Moreover, we have Fn,d = FL(ζn, µ

1/(d,h)), where FL := F̄q ∩ L.

Proof. Put D = (d, h) and write h = Dk for some k ≥ 1. Then

L(ζn, γ
1/D) = L(ζn, µ

1/Dγ̃k0 ) = FL(ζn, µ
1/D)L
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is a constant field extension of L. Hence D | v. Indeed, otherwise there would be a
prime power lα | (d, h) such that lα ∤ v. Thus, v′ = [lα, v] is greater than v and divides
d. However, we find that Ln,v′ is the compositum of Ln,lα and Ln,v over L(ζn), which
are constant field extensions. It follows that Lu,v′/L is a constant field extension, which
contradicts the maximality of v. Let us now prove that v = D. By contradiction, assume
there exists a prime l such that lD | d and L(ζn, γ

1/lD)/L is a constant field extension.
Then L(γ1/lD)/L is a constant field extension as well, and

γ = ωclD = µc̃lD,

for some ω ∈ FL and c ∈ L×, by Theorem 3.3. Hence γ̃ = c̃lD, which, by maximality of h,
yields that lD | h. A contradiction.

Theorem 3.7. Let i = [FL : Fq]. We have

[Fn,d : Fq] =
i · ordn(qi) · (d, h)
(indFL(ζn)×(µ), d, h)

,

where indFL(ζn)×(µ) is the index of µ in the group F×
q .

Proof. It is known that [FL(ζn) : Fq] = iordn(q
i). We write u = indFL(ζn)×(µ) and, by

Lemma 3.6, we have
Fn,d = FL(ζn, µ

1/(d,h)) = FL(ζn, v
1/u0),

where u0 = (d, h)/(d, h, u) and v(d,h,u) = µ. We claim that u0 = [Fn,d : FL(ζn)]. Indeed,
let us show that Xu0 − v is irreducible over FL(ζn) using Theorem 3.4. Let l | u0 be a
prime. By contradiction, if v = cl for some c ∈ FL(ζn), then

µ = v(d,h,u) = cl(d,h,u).

Because u0 | qiordn(q
i) − 1 and by the maximality of u, we obtain l(d, h, u) | u. This yields

a contradiction since l | u0. If 4 | u0 and v = −4y4 for some y ∈ FL(ζn), then v = (2iy2)2.
This is because 4 | u0 implies that 4 | qiordn(qi) − 1, so −1 is a square in FL(ζn). This
contradicts what we proved in the above, and by Theorem 3.4, the polynomial Xu0 − v is
irreducible over FL(ζn).

Theorem 3.8. We have [Ln,d : Fn,dL] = d/(d, h).

Proof. Put d0 = d/(d, h) and write γ = b(d,h) for some b ∈ Fn,dL. The latter is possible
because of Lemma 3.6. It suffices to show that Xd0 − b is irreducible over Fn,dL using
Theorem 3.4. By contradiction, if b ∈ (Fn,dL

×)l for some prime l | d0, then L(γ1/l(d,h))/L
is a constant field extension and γ = ucl(d,h), where u ∈ FL and c ∈ L. Hence γ̃ = c̃l(d,h)
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and l(d, h) | h, which contradicts the coprimality of d0 and h/(d, h). Finally, if 4 | d0 and
if b = −4x4 for some x ∈ Fn,dL, then b = (2ζ4x

2)2 because 4 | d0 implies that ζ4 ∈ Fn,d.
We know from the above argument that l = 2 is not possible.

Now, we prove a bound for the genus of Ln,d/Fn,d. It will be used on the bound of
Theorem 3.1, when applied to Kummer extensions, in order to get rid of the dependence
in the degree [Ln,d : Fn,dK] in the upper bound.

Proposition 3.9. Let gn,d be the genus of Ln,d/Fn,d. Then, there exists a constant c0 > 0,
that only depends on γ and gL, such that gn,d ≤ c0[Ln,d : Fn,dL].

Proof. Put M := Fn,dL and let gM be the genus of M/Fn,d. Note that Ln,d = M(α1/d0),
where d0 = d/(d, h) = [Ln,d :M ] by Theorem 3.8, and α = vγ̃h0

0 , with v ∈ Fn,d a (d, h)-th
root of µ and h0 = h/(d, h). Applying [34, Proposition 3.7.3] to Ln,d and M yields

gn,d = 1 + d0

(
gM − 1 +

1

2

∑
P∈PM
vP (α)̸=0

(
1− (vP (α), d0)

d0

)
degM (P )

)
,

where PM is the set of primes of M and degM (P ) = [OP /P : Fn,d] is the degree of P , that
is, the degree of its residue class field OP /P over Fn,d, where OP denotes the valuation
ring of P in M . Note that vP (α) = 0 if and only if vP (γ̃0) = 0 because v is a constant and
h0 ≥ 1. Moreover, by [34, Theorem 3.6.3], we have gM = gL the genus of L/Fq. Thus,

gn,d ≤ d0
(
gL +

∑
P∈PM

vP (γ̃0 )̸=0

degM (P )

2

)
.

Let π = P ∩ L, so that P is a prime lying above π in M . By [34, Theorem 3.6.3] again,
we know that OP /P is the compositum of Oπ/π and Fn,d. Hence

degM (P ) = [OP /P : Fn,d] =
[OP /P : Fq]

[Fn,d : Fq]
=

[Oπ/π : Fq]

([Oπ/π : Fq], [Fn,d : Fq])
,

and we find that degM (P ) ≤ degL(π). Since γ̃0 ∈ L, we have vP (γ̃0) = 0 if and only if
vπ(γ̃0) = 0. Finally, because π splits into at most degL(π) primes in M , we obtain

∑
P∈PM

vP (γ̃0 )̸=0

degM (P )

2
≤

∑
π∈PL

vπ(γ̃0 )̸=0

∑
P∈PM
P |π

degL(π)

2
≤

∑
π∈PL

vπ(γ̃0 )̸=0

degL(π)
2

2
,

and the result follows.
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Lemma 3.10. Let P ∤ ∆a2 be a prime in K and p ∈ Ln,d be a prime lying over P . We
denote by σp the Frobenius element (Ln,d/K, p). Then, we have

NP ≡ ϵP (mod n) and d | ιU (P )

if and only if σp = id when ϵP = 1, and otherwise

σp(ζn) = ζ−1
n and σp(γ

1/d) = γ−1/d.

Proof. Assume that NP ≡ ϵP (mod n) and d | ιU (P ). Then, we have

σp(ζn) ≡ ζNP
n = ζϵPn (mod p).

Since both sides are constants in Ln,d, we have equality. Next, let π := p∩OL. On the one
hand, we have σp(γ) = (L/K, π)(γ) = γϵP . Taking the d-th root on both sides, we obtain
σp(γ

1/d) = ζkdγ
ϵP /d for some k ∈ Z. On the other hand, we have

σp(γ
1/d) ≡ γNP/d (mod p)

by definition of the Frobenius element. Now, because d | ιU (P ), we know that ρU (P )
divides (NP − ϵP )/d. Using Lemma 2.5, we obtain

σp(γ
1/d) ≡ γ(NP−ϵP )/d · γϵP /d ≡ γϵP /d (mod p)

Hence ζkdγ
ϵP /d ≡ γϵP /d (mod p), and multiplying by γ−ϵP /d yields ζkd ≡ 1 (mod p). Now,

because both sides are constants, we must have equality. Therefore, σp is completely
determined by the relations

σp(ζn) = ζϵPn and σp(γ
1/d) = γ−1/d,

which completes this side of the equivalence.
For the converse, we have ζϵPn ≡ ζNP

n (mod p) by definition of the Frobenius element,
so that ζNP−ϵP

n = 1. It follows directly that NP ≡ ϵP (mod n). Next, we have

γ(NP−ϵP )/d ≡ (γ1/d)NPγ−ϵP /d = σp(γ
1/d)γ−ϵP /d = 1 (mod p),

which holds modulo π. Therefore, we have ρU (P ) divides (NP − ϵP )/d by Lemma 2.5,
and we obtain d | ιU (P ).
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3.1.3 An arithmetic property of the multiplicative order

Let d, q be coprime integers. The first result of this subsection gives some basic arithmetic
properties for numbers of the form (qN − 1, d∞). As a consequence, we prove a formula
for orddv(q) that generalises the well-known formula

ordlk(q) = ordl(q) ·

1, if 1 ≤ k ≤ α;

lk−α, if k > α,

where α = vl(q
ordl(q) − 1) and l ≥ 3 is prime, and its analogue for l = 2. For every m ≥ 1

such that f := ordd(q) divides m, we define P(m) the proposition

P(m) : 2∥d, q ≡ 3 (mod 4) and 2 ∤ m, (3.1)

Throughout this thesis, we use the Iverson brackets, defined for all propositions P by
[P] = 1 if P is true, and [P] = 0 otherwise. The following lemma is enough to see that
interesting things might happen when the proposition P(m) is true:

Lemma 3.11. Let m,n, q ≥ 1 be integers with (d, q) = 1 and d | qm − 1. Then

(qmn − 1, d∞) = (qm − 1, d∞)(n, d∞) ·

2v2(q
m+1)−1, if [P(m)] = 1 and 2 | n;

1, otherwise.

Proof. The map d 7→ (k, d∞), where k is a fixed integer, defines a multiplicative function.
Thus, it suffices to prove the result for (qmn − 1, l∞), where l | d. By [3, Lemma 4]
and [2, Proposition 2.4], and by replacing ordl(q) by m and q by qm respectively in the
proofs, which is allowed since it only uses that l | qm − 1, we obtain

vl

(
qmn − 1

qm − 1

)
= vl(n) +

2v2(q
m+1)−1, if l = 2 and 2 | n;

1, otherwise.

The result follows using v2(qm + 1) = 1 if P(m) is false.

Lemma 3.12. Let q ≥ 1 be prime to d and f = ordd(q). For all v | d∞, we have

orddv(q) = fdv ·


2

(q2f − 1, dv)
, if [P(f)] = 1 and 2 | v;

1

(qf − 1, dv)
, otherwise.

Proof. Assume v2(d) ̸= 1 and put n = dv/(qf − 1, dv). By Lemma 3.11, with m = f and
n = n, we have dv | qfn− 1. Hence n = tm, where m ≥ 1 and t := orddv(q)/f . By Lemma
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3.11 again, we have

dv | (qft − 1, d∞) = (qf − 1, d∞) · dv

(qf − 1, dv)(m, d∞)
,

so that m = (m, d∞) divides (qf − 1, d∞)/(qf − 1, dv). But the latter is coprime to n,
which yields that m = 1. Next, assume that 2 ∥ d and note that for any odd integer n ≥ 1,
we have ord2n(q) = ordn(q). When 2 ∤ v, we have orddv(q) = orddv/2(q) and we conclude
using what we proved in the above. When 2 | v, put D = 2d and u = v/2, so that

orddv(q) = ordDu(q) =
ordD(q)dv

(qordD(q) − 1, dv)
,

by the above again. We have ordD(q) = [ord4(q), ordd/2(q)] = [ord4(q), f ] because 22∥D,
and we conclude using that ord4(q) equals 1 or 2, whether q ≡ 1 (mod 4) or q ≡ 3 (mod 4)

respectively.

3.2 The d3-density of R+
q (γ, d)

Throughout this section and the rest of this chapter, we write e+N = (qN − 1, d∞)/d for all
N ≥ 1 divisible by f := ordq(d). Recall that R+

q (γ, d) is the set

R+
q (γ, d) = {P ∈ P+ : P ∤ ∆a2, d | ρU (P ) and ϵP = 1}.

In this chapter, we prove that R+
q (γ, d) has a d3-density. Moreover, we obtain a formula

for the density in the form of a series on the divisors of d∞.

3.2.1 The proportion by degree

Given a natural number N ≥ 1, we first study the function R+
q (γ, d,N) that counts the

number of primes in in R+
q (γ, d) of degree N . By Lemma 2.5, we see that d must divide

qN − 1 for R+
q (γ, d,N) to be positive. Therefore, the order f = ordd(q) must divide N .

Note that [FL : Fq] must divide N as well. Indeed, when L = K or L/K is geometric, we
have FL = Fq and [FL : Fq] = 1 trivially divides N . However, when L = Fq2(T ), by [29,
Proposition 8.13], a prime P ∈ K splits in L only if it has even order, i.e., [FL : Fq] | N .
Therefore, we consider positive N ≡ 0 (mod fL), where fL = [[FL : Fq], f ].

For a Galois extension M/K, we let {M} denote the set of primes in K that completely
split in M and {M}N the number of those primes that have degree N . In our first result,
we write R+

q (γ, d,N) as a linear combination of functions {Ln,d}N . It is an analogue
of [21, Proposition 1] in the classical case.
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Lemma 3.13. For each N ≡ 0 (mod fL), we have

R+
q (γ, d,N) =

∑
v|e+N

∑
u|d

µ(u){Ldv,uv}N .

Proof. Let S(N) be the set of monic irreducible polynomials in R+
q (γ, d) with degree N .

Any prime P ∈ S(N) satisfies

deg (P ) = N, P ∤ ∆a2, d | ρU (P ), and ϵP = 1.

Since qN−1 = ρU (P )ιU (P ), the condition d | ρU (P ) is equivalent to d(ιU (P ), d∞) | qN−1,
that is, there exists a unique v | d∞ such that

dv | qN − 1, v | ιU (P ) and
(
ιU (P )

v
, d

)
= 1. (3.2)

The last condition in (3.2) is equivalent to lv ∤ ιU (P ) for all primes l | d. Hence, S(N) is
the disjoint union

S(N) =
⊔
v|e+N

(
S1,v(N) \

⋃
l|d

Sl,v(N)

)
,

where Su,v(N) = {P ∈ S(N) : dv | qN − 1 and uv | ιU (P )}. Finally, the set Su,v(N)

has cardinality {Ldv,uv}N by Lemma 3.10. The result follows by the inclusion-exclusion
principle.

Lemma 3.14. If [Fn,d : Fq] ∤ N , then {Ln,d}N = 0. Otherwise, there exists c1 > 0, that
only depends on γ and L, such that∣∣∣∣{Ln,d}N −

qN

N

(d, h)

[L : FLK]d

∣∣∣∣ ≤ 2c1 ·
qN/2

N
.

Proof. It suffices to apply the Chebotarev density theorem, i.e., Theorem 3.1. The exten-
sion Ld,d/K is Galois since it is the splitting field of Xd − γ if L = K, and of

(Xd − γ)(Xd − σL(γ)),

otherwise, where σL is the non-trivial automorphism of L/K. They are separable polyno-
mials because p ∤ n and γ ̸= 0. It follows that Ln,d/K is Galois as well since Ln,d/Ld,d is
a constant field extension. We choose C = {id} for the conjugacy class, as P ∈ K splits
completely in Ln,d if and only if (Ln,d/K, p) = id, where p ∈ Ln,d is a prime above P . It
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follows from Theorem 3.1 that {Ln,d}N = 0 if [Fn,d : Fq] ∤ N , and that∣∣∣∣{Ln,d}N −
qN

N

1

[Ln,d : Fn,dK]

∣∣∣∣ ≤ 2c1 ·
qN/2

N
,

for some c1 > 0, otherwise. The constant c1 is obtained using Proposition 3.9 and

1

N
≤ 1
√
q

qN/2

N
and

qN/4

N
≤ 1

4
√
q

qN/2

N
,

valid for all N ≥ 1. We have

c1 = c0

(
1 +

1
√
q

)
+

1
4
√
q
,

where c0 depends only on γ and L. The result follows using Theorem 3.8.

For the rest of the chapter, we write fu,v = [Fdv,uv : Fq] for all u | d and v | d∞.
Combining Lemmas 3.13 and 3.14, we obtain the following theorem in which fu,v plays a
crucial role:

Theorem 3.15. For each positive N ≡ 0 (mod fL), we have∣∣∣∣R+
q (γ, d,N)− qN

N
· δ+q (γ, d,N)

∣∣∣∣ ≤ 2ω(d)+1c1 ·
τ(e+N )qN/2

N
,

where c1 is the constant defined in Lemma 3.14 and

δ+q (γ, d,N) =
1

[L : FLK]

∑
v|e+N

∑
u|d

µ(u)(uv, h)

uv
[fu,v | N ].

Proof. Let S+
q (γ, d,N) denote the difference R+

q (γ, d,N)− δ+q (γ, d,N)qN/N . Using Lem-
mas 3.13 and 3.14, we have

|S+
q (γ, d,N)| ≤ 2c1 ·

qN/2

N

∑
v|e+N

∑
u|d

|µ(u)| = 2ω(d)+1c1 ·
τ(e+N )qN/2

N
,

the sought result.

3.2.2 The existence of the density

The proof of the existence and the computation of the d3-density of R+
q (γ, d) requires to

partition N into a countable union of distinct arithmetic progressions, following a method
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of Ballot [3]. Recall that fL = [[FL : Fq], f ]. We have

N =

fL−1⊔
j=1

Sj ⊔
⊔

w|d∞

d⊔
α=1

(α,d)=1

Aw,α, (3.3)

where Sj = {fLn+j : n ≥ 0} and Aw,α = {fLw(α+dn) : n ≥ 0}. We have δ+q (γ, d,N) = 0

for all N ∈ Sj . This is because R+
q (γ, d,N) is empty only if fL ∤ N . For N ∈ Aw,α, we have

e+N = e+fLw by Lemma 3.11, which is an integer that depends only on w. Moreover, we have
fu,v | N if and only if fu,v | fLw. Indeed, by Theorem 3.7, we have fu,v = iorddv(q

i)k0 for
some k0 | d∞, where i = [FL : Fq]. By Lemma 3.12, we have iorddv(qi) = fLk1 for some
k1 | d∞. Hence fu,v = fLk, where k | d∞. We obtain

δ+q (γ, d,N) =
1

[L : FLK]

∑
v|e+fLw

∑
u|d

µ(u)(uv, h)

uv
· [fu,v | fLw], (3.4)

which is a constant that does not depend on n, nor α. We denote this quantity by δ+w , and
define δ+q (γ, d) as

δ+q (γ, d) =
φ(d)

dfL

∑
w|d∞

δ+w
w
. (3.5)

We show that δ+q (γ, d) is the d3-density of the set R+
q (γ, d).

The following lemma displays two results that can be found in the literature. (See for
instance the proofs of [21, Lemma 2] or [30, Lemma 6.3].) However, the proof is usually
left to the reader. Here, we provide a short proof.

Lemma 3.16. There exists c2 > 0 such that for every x ≥ e2ω(d), we have

∑
w|d∞
w≤x

1 ≤ c2 log(x)ω(d) and
∑
w|d∞
w>x

1

w
≤ 2c2 log (x)

ω(d)

x
.

Proof. Let Md(x) denote the sum on the left. We see that Md(x) is bounded above by the
product of logl(x)+1 for all prime divisors l of d. We have logl(x)+1 ≤ log(x) for all primes
e2 ≤ l ≤ x. If l ≤ e2, then there exists a constant Cl > 0 such that logl(x)+ 1 ≤ Cl log(x).
Then, we choose c2 equal the product of the Cl’s over all primes l ≤ e2. Next, we apply
the Abel summation formula to the series on the right, so that Md(x) re-appears. We find

∑
w|d∞
w>x

1

w
=

∫ +∞

x

Md(t)

t2
dt− Md(x)

x
≤ c2

∫ +∞

x

log (t)ω(d)

t2
dt.
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Call I(x) the integral on the right-hand side of the above inequality. For x ≥ e2ω(d), we
see that I(x) − 2 log(x)ω(d)/x is an increasing function that converges to 0 as x tends to
infinity. Hence I(x) ≤ 2 log(x)ω(d)/x and the result follows.

Lemma 3.17. For every N ≥ e2ω(d), we have

∣∣∣∣ 1N
N∑

n=1

δ+q (γ, d, n)− δ+q (γ, d)
∣∣∣∣ ≤ c2φ(d)(1 + 2

dfL

)
log (N)ω(d)

N
,

where c2 is the absolute constant defined in Lemma 3.16.

Proof. From the partition of N given in (3.3), we have

SN :=
1

N

N∑
n=1

δ+q (γ, d, n) =
1

N

∑
w|d∞

d∑
α=1

(α,d)=1

Aw,α(N)δ+w ,

where Aw,α(N) = #Aw,α ∩ [1, N ]. Moreover, we used δ+q (γ, d, n) = 0, if n ∈ Sj , and
δ+q (γ, d, n) = δ+w , if n ∈ Aw,α. Note that w ≤ N and

Aw,α(N) =

⌊
N + fLw(d− α)

dfLw

⌋
,

which, by the properties of the floor function, satisfies

N

dfLw
− 1 ≤ Aw,α(N) ≤ N

dfLw
+ 1.

Therefore, on the one hand, we have

SN ≥
φ(d)

dfL

∑
w|d∞
w≤N

δ+w
w
− φ(d)

N

∑
w|d∞
w≤N

δ+w

= δ+q (γ, d)−
φ(d)

N

∑
w|d∞
w≤N

δ+w −
φ(d)

dfL

∑
w|d∞
w>N

δ+w
w
.

and on the other hand,

SN ≤
φ(d)

dfL

∑
w|d∞
w≤N

δ+w
dw

+
φ(d)

N

∑
w|d∞
w≤N

δ+w

= δ+q (γ, d) +
φ(d)

N

∑
w|d∞
w≤N

δ+w −
φ(d)

dfL

∑
w|d∞
w>N

δ+w
w
.
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Finally, we obtain

|SN − δ+q (γ, d)| ≤
φ(d)

N

∑
w|d∞
w≤N

δ+w +
φ(d)

dfL

∑
w|d∞
w>N

δ+w
w
≤ c2φ(d)

(
1 +

2

dfL

)
log(N)ω(d)

N
,

where we used that δ+w ≤ 1, and Lemma 3.16.

We are now ready to prove the main result of this section, which is that δ+q (γ, d) is the
d3-density of R+

q (γ, d).

Theorem 3.18. There exists a positive constant c3 > 0, that may only depend on d, γ
and gL, such that

∣∣∣∣ 1N
N∑

n=1

R+
q (γ, d, n)

qn/n
− δ+q (γ, d)

∣∣∣∣ ≤ c2φ(d)(1 + 2

dfL

)
log (N)ω(d)

N
+
c3
N
,

for all N ≥ e2ω(d), where c2 is the constant defined in Lemma 3.16. In particular, R+
q (γ, d)

has d3-density equal to δ+q (γ, d).

Proof. First, we put

RN =
1

N

N∑
n=1

R+
q (γ, d, n)

qn/n
and SN =

1

N

N∑
n=1

δ+q (γ, d, n).

By Lemma 3.17, for all N ≥ e2ω(d), we have

|RN − δ+q (γ, d)| ≤ |RN − SN |+ c2φ(d)

(
1 +

2

dfL

)
log (N)ω(d)

N
,

Let us bound |RN − SN |. By Theorem 3.15, and since δ+q (γ, d, n) = 0 if fL ∤ n, we have

|RN − SN | ≤
1

N

N∑
n=1
fL|n

∣∣∣∣R+
q (γ, d, n)

qn/n
− δ+q (γ, d, n)

∣∣∣∣ ≤ 2ω(d)+1c1
N

N∑
n=1
fL|n

τ(e+n )q
−n/2.

By Lemma 3.11, we see that e+n ≤ 2v2(q
fL+1)e+fLn/fL. This implies that the number of

divisors of e+n is at most v2(qfL + 1)τ(e+fL)n/fL, using τ(m) ≤ m for all m ≥ 1. Hence

|RN − SN | ≤
2ω(d)+1v2(q

fL + 1)τ(e+fL)c1

NfL

N∑
n=1
fL|n

nq−n/2 =:
c

NfL

N∑
n=1
fL|n

nq−n/2.
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We obtain

|RN − SN | ≤
c

NfL

+∞∑
n=1
fL|n

nq−n/2 =
c

N

q−fL/2

(q−fL/2 − 1)2
=:

c3
N
.

This completes the proof of the bound. Letting N tend to infinity shows that the set
R+

q (γ, d) has d3-density equal to δ+q (γ, d).

Corollary 3.19. The set R+
q (γ, d) has d4 and Dirichlet density equal to δ+q (γ, d).

Proof. Theorem 3.18 establishes the existence and the value of the d3-density of R+
q (γ, d).

The result follows from [4, Theorem A].

We successfully proved the existence of the d3-density of R+
q (γ, d) for the non-trivial

cases. However, the density δ+q (γ, d) is expressed via a series on all divisors of d∞, which
makes its computation difficult. We dedicate Chapter 4 to the search of a closed-form
formula for the density, that is, an expression that requires only finitely many simple
operations.

3.3 The d3-density of R−q (γ, d)

In this section, we follow the same method as in the previous one to prove the existence
of the d3-density of

R−
q (γ, d) = {P ∈ P+ : P ∤ ∆a2, d | ρU (P ) and ϵP = −1}.

That is, we first study the function R−
q (γ, d,N) that counts the number of primes in

R−
q (γ, d) that have degree N . Next, we partition N in a way that allows us to find the

d3-density expressed as a series.
Note that in many cases, the set R−

q (γ, d) is empty. For instance, when L = K, every
prime P ∈ K satisfies ϵP = 1. Moreover, when [L : K] = 2, if there is no integer k ≥ 1 such
that d | qk +1, then R−

q (γ, d) is empty because d needs to divide NP +1 = qdeg(P ) +1 for
all primes P ∈ R−

q (γ, d). Therefore, for the rest of the chapter, we assume [L : K] = 2 and
the existence of k. Note that [5, Theorem 27, Section 2] provides necessary and sufficient
condition for the existence of k. When it exists, we have f = k = 1 if d = 2, and f = 2k

otherwise. Now, we have only two cases to consider: 2 | f and (d, q − 1) ≤ 2, and d = 2.
This comes from the following elementary lemma:

Lemma 3.20. Assume d | qk + 1 for some k ≥ 1. Then, R−
q (γ, d) is not empty only if

either 2 | f and (d, q − 1) ≤ 2, or d = 2.
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Proof. Let P ∈ R−
q (γ, d). Since d | ρU (P ), we have d | NP + 1 by Lemma 2.5. We first

assume d ≥ 3. We saw that 2 | f because of the existence of k ≥ 1 such that d | qk + 1.
Now, let l be a prime that divides (d, q− 1). Then, l divides NP +1, which implies l = 2,
since (NP + 1, q − 1) ≤ 2. We write (d, q − 1) = 2n for some n ≥ 0. We trivially have
n ≤ 1 when q ≡ 3 (mod 4) or 2 | q. When q ≡ 1 (mod 4), we have v2(NP + 1) = 1, and
thus v2(d) ≤ 1 and n = v2(d).

The case d = 2 turns out to be quite peculiar and is treated in a separate subsection.
However, the method remains the same and, in both cases, we write R−

q (γ, d,N) as a linear
combination of functions CN (Ln,d/K, C) defined in Theorem 3.1, where d | n. Here, we
take C as the conjugacy class of a single element σ ∈ Gal(Ln,d/K), when it exists, such
that σ(a) = b, σ(ζn) = ζ−1

n , and σ(γ1/d) = γ−1/d.

Lemma 3.21. Assume that there exists σ ∈ Gal(Ln,d/K) such that σ(a) = b, σ(ζn) = ζ−1
n ,

and σ(γ1/d) = γ−1/d. Then, σ belongs to the center of Gal(Ln,d/K).

Proof. First, note that L(ζn)/K is an abelian extension. If L = Fq2L, then L(ζn)/K is a
constant field extension, which is always cyclic. If L/K is geometric, then

Gal(L(ζn)/K) ∼= Gal(L/K)×Gal(K(ζn)/K),

by [17, Theorem 1.14] because L ∩K(ζn) = K. But L/K is abelian since it is a quadratic
extension, and K(ζn) is an extension of the field of constants. Hence L(ζn)/K is abelian.
Now, we know that any automorphism σ1 ∈ Gal(Ln,d/K) is uniquely determined by the
images of a, ζn, and γ1/d. Therefore, we only need to check whether σ1σσ−1

1 (x) = σ(x)

for all σ1 ∈ Gal(Ln,d/K) and x ∈ {a, ζn, γ1/d}. By the above, we know that it is true for
x ∈ {a, ζn} by restriction of σ and σ1 to L(ζn). Finally, since σ1(γ) is equal to one of γ
and γ−1, we obtain σ1(γ

1/d) = ζkdγ
±1/d for some k ∈ Z. It is then easy to verify that σ

and σ1 commute.

We proceed as in Section 3.2 by looking at the fields Ldv,uv, where u | d and v | d∞.
Again, we call σu,v the automorphism of Ldv,uv defined in Lemma 3.21, when it exists. That
is, the automorphism such that σu,v(a) = b, σu,v(ζdv) = ζ−1

dv , and σu,v(γ
1/uv) = γ−1/uv.

Finally, we write e−N = (qN + 1, d∞)/d for all N ≥ 1 such that d | qN + 1.

3.3.1 The case 2 | f and (d, q − 1) ≤ 2

Note that by our hypotheses, we have d | qN +1 if and only if f | 2N and f ∤ N . Thus, we
assume N ≡ f/2 (mod f). Otherwise, R−

q (γ, d,N) = 0.
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Theorem 3.22. For each positive N ≡ f/2 (mod f), we have∣∣∣∣R−
q (γ, d,N)− δ−q (γ, d,N) · q

N

N

∣∣∣∣ ≤ 2ω(d)+1c1 ·
τ(e−N )qN/2

N
,

where c1 > 0 is the constant defined in Lemma 3.14 and

δ−q (γ, d,N) =
1

[L : FLK]

∑
v|e−N

∑
u|d

µ(u)(uv, h)

uv
· BN (u, v),

with BN (u, v) := [σu,v exists and N ≡ fu,v/2 (mod fu,v)].

Proof. As in the proof of Lemma 3.13, we write R−
q (γ, d,N) as a double sum. Note that

ϵP = 1 should be replaced by ϵP = −1, and qN − 1 by qN + 1. We obtain

R−
q (γ, d,N) =

∑
v|e−N

∑
u|d

µ(u)S−
u,v(N),

where S−
u,v(N) is the number of primes P ∤ ∆a2 in K of degree N such that ϵP = −1,

dv | qN + 1, and uv | ιU (P ). By Lemma 3.10, this is equivalent to (Ldv,uv/K, p) = σu,v for
all primes p ∈ Ldv,uv lying above P , when σu,v exists. Hence S−

u,v(N) counts exactly the
primes P whose Artin symbol satisfies (Ldv,uv/K,P ) = {σu,v}, since the conjugacy class of
σu,v is the singleton {σu,v} by Lemma 3.21. Therefore, with the notation of Theorem 3.1,
we have S−

u,v(N) = CN (Ldv,uv/K, {σu,v}) · [σu,v exists]. We now want to apply Theorem
3.1 to CN (Ldv,uv/K, {σu,v}) for all u | d and v | e−N whenever σu,v exists. First, we
determine k ≥ 1 such that σu,v|Fdv,uv

= τk|Fdv,uv
, where τ is the Frobenius automorphism

of Fdv,uv/Fq. Since σ2u,v = id, the same is true for the restriction. Therefore, σu,v|Fdv,uv
is

either the identity, or has order two. The relation σu,v(ζdv) = ζ−1
dv ensures that it has order

two, because d ≥ 3 and ζdv ̸= ζ−1
dv . We obtain

τ2k|Fdv,uv
= id and τk|Fdv,uv

̸= id,

which implies that fu,v/2 is a good choice for k. By Theorem 3.1, we obtain∣∣∣∣CN (Ldv,uv/K, {σu,v})−
1

[Ldv,uv : Fdv,uvK]

qN

N

∣∣∣∣ ≤ 2c1 ·
qN/2

N
, (3.6)

for all N ≡ fu,v/2 (mod fu,v), where c1 > 0 is the same constant as in Lemma 3.14.
Otherwise, we have CN (Ldv,uv/K, {σu,v}) = 0. Finally, we obtain∣∣∣∣R−

q (γ, d,N)− δ−q (γ, d,N) · q
N

N

∣∣∣∣ ≤ 2c1
∑
v|e−N

∑
u|d

|µ(u)| · q
N

N
,
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where we used (3.6), Theorem 3.8 for the degree, and BN (u, v) ≤ 1. The right-hand side
is equal to 2ω(d)+1c1τ(e

−
N )qN/N , the upper bound we sought.

We compute the d3-density by partitioning N in a convenient way. The partition we
use is different from the one used in Section 3.2. We have N = A ⊔ B, where A the set of
positive integers N ̸≡ f/2 (mod f) and

B =
⊔

w|d′∞

d⊔
α=1

(α,[2,d])=1

Bw,α, (3.7)

where d′ = d/(d, 2∞) and Bw,α = {fw(α+[2, d]n)/2 : n ≥ 0}. We see that δ−q (γ, d,N) = 0

for all N ∈ A since R−
q (γ, d,N) = 0 when N ̸≡ f/2 (mod f). Moreover, we have

e−N =
e+2N

(qN − 1, d∞)
=

e+fw
(qN − 1, 2∞)

,

for all N ∈ Bw,α, by Lemma 3.11 and because (qN + 1, qN − 1) ≤ 2. Since v2(N) = v2(f)

and because 2 ∤ w, we have (qN − 1, 2∞) = (qfw − 1, 2∞). Hence e−N = e−fw/2 for all
N ∈ Bw,α, which only depends on w. We obtain

δ−q (γ, d,N) =
1

[L : FLK]

∑
v|e−

fw/2

∑
u|d

µ(u)(uv, h)

uv
· BN (u, v),

for all N ∈ Bw,α. The best-case scenario would be that δ−q (γ, d,N) only has a dependence
on w, akin to its analogue δ+q (γ, d,N) in (3.4). Combining Theorem 3.7 and Lemma 3.12,
we see that fu,v = fk for some k | d∞. Therefore, the congruence N ≡ fu,v/2 (mod fu,v)

is equivalent to fw ≡ fu,v (mod 2fu,v) for all N ∈ Bw,α. Hence, we let

δ−w =
1

[L : FLK]

∑
v|e−

fw/2

∑
u|d

µ(u)(uv, h)

uv
· B(u, v), (3.8)

where B(u, v) = [σu,v exists and fw ≡ fu,v (mod 2fu,v)]. We are now ready to prove the
main theorem for this subsection, which states that

δ−q (γ, d) :=
2φ(d)

f [2, d]

∑
w|d′∞

δ−w
w

(3.9)

is the d3-density of R−
q (γ, d).
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Theorem 3.23. There exists c4 > 0, that only depends on d, γ and gL, such that

∣∣∣∣ 1N
N∑

n=1

R−
q (γ, d, n)

qn/n
− δ−q (γ, d)

∣∣∣∣ ≤ c2φ(d)(1 + 4

[2, d]f

)
log (N)ω(d

′)

N
+
c4
N
,

for all N ≥ e2ω(d′), where c2 is the constant defined in Lemma 3.16. In particular, R−
q (γ, d)

has d3-density equal to δ−q (γ, d).

Proof. The proof is similar to the proofs of Lemma 3.17 and Theorem 3.18, so we may skip
a few details. We define

RN =
1

N

N∑
n=1

R−
q (γ, d, n)

qn/n
and SN =

1

N

N∑
n=1

δ−q (γ, d, n).

We aim to bound |RN − SN | and |SN − δ−q (γ, d)|. By Theorem 3.22, we have

|RN − SN | ≤
1

N

N∑
n=1

∣∣∣∣∣R−
q (γ, d, n)

qn/n
− δ−q (γ, d, n)

∣∣∣∣∣ ≤ 2ω(d)+1c1
N

N∑
n=1

′
τ(e−n )q

−n/2,

where
∑ ′ indicates that indices are taken congruent to f/2 modulo f . By Lemma 3.11,

we show that e−n = e+2n/(q
n − 1, d∞) = e−f/2(2n/f, d

∞). Hence

N∑
n=1

′
τ(e−n )q

−n/2 ≤ τ(e−f/2)
N∑

n=1

′ 2nq−n/2

f
= τ(e−f/2)

⌊(2N−f)/2f⌋∑
k=0

(1 + 2k)q−(1+2k)f/4,

where we used that τ(e−n ) ≤ τ(e−f/2)2n/f . Because q−f/4 < 1, we obtain

|RN − SN | ≤
2ω(d)+1c1τ(e

−
f/2)

N

+∞∑
n=1

nq−fn/4 =
2ω(d)+1c1τ(e

−
f/2)q

−f/4

N(q−f/4 − 1)2
=:

c4
N
.

We now turn our attention to |SN − δ−q (γ, d)|. Using (3.7), we have

SN =
1

N

N∑
n=1

δ−q (γ, d, n) =
1

N

∑
w|d′∞
w≤N

[2,d]∑
α=1

(α,[2,d])=1

Bw,α(N)δ−w ,

where Bw,α(N) = #Bw,α ∩ [1, N ], where we took into account that δ−q (γ, d, n) = 0 for all
n ∈ A. We have

Bw,α(N) =

⌊
2N + fw([2, d]− α)

f [2, d]w

⌋
,
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and, similarly to the proof of Lemma 3.17, we find the upper bound

SN ≤ δ−q (γ, d) +
2φ([2, d])

[2, d]f

∑
w|d′∞
w>N

δ−w
w

+
φ([2, d])

N

∑
w|d′∞
w≤N

δ−w ,

and the lower bound

SN ≥ δ−q (γ, d)−
2φ([2, d])

[2, d]f

∑
w|d′∞
w>N

δ−w
w
− φ([2, d])

N

∑
w|d′∞
w≤N

δ−w .

By Lemma 3.16, and since φ([2, d]) = φ(d) and δ−w ≤ 1, we obtain

∣∣SN − δ−q (γ, d)∣∣ ≤ φ(d)c2(1 + 4

[2, d]f

)
log(N)ω(d

′)

N
,

for all N ≥ e2ω(d′). The inequality |RN − δ−q (γ, d)| ≤ |RN − SN |+ |SN − δ−q (γ, d)| and our
bounds yield the result.

3.3.2 The case d = 2

We now assume that d = 2. Since (d, q) = 1, we may use the Legendre symbol (∆/P )
instead of the ϵP notation for all P ∈ A.

As mentioned before, this case is somewhat different. Indeed, the study of R−
q (γ, 2, N)

has two cases: qN ≡ 1 (mod 4) and qN ≡ 3 (mod 4). In some special cases, we obtain
that R−

q (γ, 2) has a positive d1-density. However, any hope of having a similar result for
the full set Rq(γ, 2) will vanish in Section 3.4, where we prove that Rq(γ, 2) does not have
a d1-density.

Lemma 3.24. Let u ∈ Fq be the leading coefficient of a2. Then, we have

[F2,2 : Fq] =

2, if FL = Fq2, or 2 | h and u ̸∈ (F×
q )

2;

1, otherwise.

Proof. By Lemma 3.6, we have F2,2 = FL(µ
1/(2,h)). Moreover, because γ = a2/a2, we can

write µ = sgn(a)2/u. Then, we can replace µ by u to obtain F2,2 = FL(u
1/(2,h)). Now,

because u ∈ Fq, it follows that F2,2 = Fq2 if FL = Fq2 . Otherwise, F2,2 = Fq(u
1/(2,h)) and

the result follows trivially.

Theorem 3.25. Let N ≥ 1 be such that qN ≡ 1 (mod 4). Then R−
q (γ, 2, N) = 0 if 2 | N
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and F2,2 = Fq2. Otherwise, we have∣∣∣∣R−
q (γ, 2, N)−

(
1

[L : FLK]
− [σ2,1 exists]

[L2,2 : F2,2K]

)
· q

N

N

∣∣∣∣ ≤ 4c1 ·
qN/2

N
,

where c1 > 0 is the constant of Lemma 3.14 and σ2,1 was defined below Lemma 3.21.
Moreover, σ2,1 exists in the Galois group of L2,2/K if and only if 2 ∤ h, or

(1) 2 | h, FL = Fq and µ ̸∈ (F×
q )

2; or

(2) γ ∈ (L×)2 and σL(γ1/2) = γ−1/2.

Proof. Let P ∈ R−
q (γ, 2) have degree N . Since v2(qN + 1) = 1, we have 2 | ρU (P ) if and

only if 2 ∤ ιU (P ). By Lemma 3.10, we have

R−
q (γ, 2, N) = CN (L/K, {σL})− CN (L2,2/K, {σ2,1}) · [σ2,1 exists],

where the CN functions were defined in Theorem 3.1.
First, we apply Theorem 3.1 to CN (L/K, {σL}). We have σL|FL

= τk, where τ is the
Frobenius automorphism of Fq2/Fq, and k = 0 if FL = Fq, and k = 1 otherwise. By
Theorem 3.1, we obtain CN (L/K, {σL}) = 0 if 2 | N and FL = Fq2 , and∣∣∣∣CN (L/K, {σL})−

1

[L : FLK]
· q

N

N

∣∣∣∣ ≤ 2c1 ·
qN/2

N
, (3.10)

otherwise, where c1 > 0 is defined as in Lemma 3.14.
Next, we study CN (L2,2/K, {σ2,1}). If σ2,1 exists, then σ2,1|F2,2 = τk, where τ is the

Frobenius automorphism of F2,2/Fq, and k = 0 if F2,2 = Fq, and k = 1 otherwise. We used
the definition of σ and Lemma 3.24. By Theorem 3.1, we obtain∣∣∣∣CN (L2,2/K, {σ2,1})−

1

[L2,2 : F2,2K]
· q

N

N

∣∣∣∣ ≤ 2c1 ·
qN/2

N
, (3.11)

for all positive N ≡ k (mod [F2,2 : Fq]), and CN (L2,2/K, {σ2,1}) = 0 otherwise. The result
follows by putting (3.10) and (3.11) together.

Lastly, we prove the conditions for the existence of σ2,1. Since σ2,1|L = σL, it suffices
to find conditions for σL to be extended into the right automorphism. Assume 2 ∤ h.
Then, the polynomial f(X) = X2 − γ is irreducible over L. Since L2,2

∼= L[X]/(f(X)),
we can extend σL into σ2,1 if and only if σLf annihilate γ−1/2. This is the case, since
σL(γ) = γ−1. The same applies to the case 2 | h, FL = Fq and µ is not a square in Fq.
Finally, assume γ is a square in L. Then L2,2 = L, and σ2,1 exists if and only if σ2,1 = σL

and σL(γ1/2) = γ−1/2.
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As mentioned at the beginning of the subsection, we obtain a positive d1-density in
some cases. Assume q ≡ 1 (mod 4) and L2,2/K is geometric. By Theorem 3.25, we have∣∣∣∣∣R−

q (γ, 2, N)

qN/N
−
(
1

2
− [σ2,1 exists]

2[L2,2 : L]

)∣∣∣∣∣ ≤ 4c1q
−N/2, (3.12)

for all N ≥ 1. Letting N tend to infinity, we find that R−
q (γ, 2) as a d1-density either equal

to 0, 1/2, or 1/4. For the remaining cases, the following corollary provides the value of the
d3-density of R−

q (γ, 2) when q ≡ 1 (mod 4):

Corollary 3.26. Assume q ≡ 1 (mod 4). Then, for all N ≥ 1, we have∣∣∣∣∣ 1N
N∑

n=1

R−
q (γ, 2, n)

qn/n
−
(
1

2
− [σ2,1 exists]

2[L2,2 : L]

)∣∣∣∣∣ ≤
(

4c1√
q − 1

+
3

4

)
1

N
.

Necessary and sufficient conditions for the existence of σ2,1 are given in Theorem 3.25.

Proof. If F2,2 = Fq, then d1(R
−
q (γ, 2)) exists by the discussion above the corollary. Then,

using (3.12), the bound for the d3-density is given by

4c1
N

N∑
n=1

q−n/2 ≤ 4c1
N

+∞∑
n=1

q−n/2 =
4c1

(
√
q − 1)N

. (3.13)

If F2,2 = Fq2 , then R−
q (γ, 2, N) = 0 for all even N ≥ 1, by Theorem 3.25. We have

SN :=
1

N

N∑
n=1
2∤n

(
1

[L : FLK]
− [σ2,1 exists]

[L2,2 : F2,2K]

)
=

1

2

(
1− [σ2,1 exists]

[L2,2 : L]

)
+ f(N),

where f(N) ≤ 3/4N for all N ≥ 1. If RN denotes the average of the R−
q (γ, 2, n)/(q

n/n)

from n = 1 up to N , then∣∣∣∣RN −
(
1

2
− [σ2,1 exists]

2[L2,2 : L]

)∣∣∣∣ ≤ |RN − SN |+
∣∣∣∣SN − (1

2
− [σ2,1 exists]

2[L2,2 : L]

)∣∣∣∣
for all N ≥ 1. We use the bound of (3.13) for |RN − SN |, and the bound 3/4N for the
second term.

Example 3.27. Let a1 = a2 = T and q = 5. We have h = 1, so that L2,2 = L(γ1/2) has
degree 4. By Corollary 3.26, we find that δ−5 (γ, 2) = 1/4. We computed

1

6

6∑
n=1

R−
5 (γ, 2)

5n/n
≈ 0.251989,
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which matches the theoretical value of 1/4.

Lemma 3.28. Let N ≥ 1 be an odd integer and assume q ≡ 3 (mod 4). We have∣∣∣∣R−
q (γ, 2, N)− δ−q (γ, 2, N) · q

N

N

∣∣∣∣ ≤ 4c1 ·
τ(e−1 )q

N/2

N
,

where c1 > 0 is the constant defined in Lemma 3.14 and

δ−q (γ, 2, N) =
1

[L : FLK]

v2(e
−
1 )∑

i=0

1∑
j=0

(−1)j(2i+j , h)

2i+j
· BN (2j , 2i),

where BN (2j , 2i), i ≥ 1, was defined in Theorem 3.22, and BN (2, 1) = [σ2,1 exists] and
BN (1, 1) = 1 otherwise.

Proof. As in the proof of Theorem 3.22, we show that

R−
q (γ, 2, N) =

v2(e
−
N )∑

i=0

(
CN (i, 0)− CN (i, 1)

)
, (3.14)

where CN (i, j) is defined for all 1 ≤ i ≤ v2(e−N ) and j ∈ {0, 1} by

CN (i, j) = CN (L2i+1,2i+j/K, {σ2j ,2i}) · [σ2j ,2i exists].

where σ2j ,2i was defined below Lemma 3.21. Because 2 ∤ N and q ≡ 3 (mod 4), applying
Lemma 3.11 to v2(q2N − 1) and v2(qN − 1) implies that v2(qN +1) = v2(q+1) for all odd
integers N . Hence, we replace e−N by e−1 in (3.14). We study the case i ≥ 1. If σ2j ,2i exists,
then it has order two by definition. It follows that its restriction to F2i+1,2i+j has order
two because ζ2i+1 is sent to ζ−1

2i+1 ̸= ζ2i+1 . Hence k = f2j ,2i/2 satisfies σ2j ,2i |F2i+1,2i+j = τk,
where τ is the Frobenius of F2i+1,2i+j/Fq. By Lemma 3.21, σ2j ,2i belongs to the center of
the Galois group. By the Chebotarev density theorem, i.e., Theorem 3.1, we find∣∣∣∣CN (i, j)− (2i+j , h)

2i+j [L : FLK]

qN

N

∣∣∣∣ ≤ 2c1 ·
qN/2

N
,

for all N ≡ f2j ,2i/2 (mod f2j ,2i), where c1 > 0 is the constant of Lemma 3.14. Otherwise,
we have CN (i, j) = 0. If i = j = 0, then σ1,1 = σL, the non-trivial automorphism of L/K,
which always exists. Its restriction to FL is either the identity element if FL = Fq, and has
order 2 otherwise. The integer

k =

0, if L/K is geometric;

1, otherwise,
(3.15)
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satisfies σL|FL
= τk, where τ is the Frobenius of FL/Fq. By Theorem 3.1, we have∣∣∣∣CN (0, 0)− 1

[L : FLK]

qN

N

∣∣∣∣ ≤ 2c1 ·
qN/2

N
,

for all odd N ≡ k (mod [FL : Fq]). By definition of k, we see that the bound holds for all
odd N ≥ 1. If j = 1, then σ2,1 is entirely determined by the relations

σ2,1(
√
∆) = −

√
∆ and σ2,1(γ

1/2) = γ−1/2.

By Lemma 3.24, we know that F2,2 has degree at most 2 over Fq. Therefore, we define k
in a way similar to (3.15), so that Theorem 3.1 yields∣∣∣∣CN (0, 1)− (2, h)

2[L : FLK]

qN

N

∣∣∣∣ ≤ 2c1 ·
qN/2

N
,

for all odd N ≥ 1, using the same reasoning as before. The result follows from applying
the bounds to (3.14). For the final bound, we follow the same path as in Theorem 3.22.

Theorem 3.29. Assume q ≡ 3 (mod 4). For each N ≥ 1, we have∣∣∣∣∣ 1N
N∑

n=1

R−
q (γ, 2, n)

qn/n
− δ−q (γ, 2)

∣∣∣∣∣ ≤
(
8c1τ(e

−
1 )√

q − 1
+

7

4

)
1

N
,

where c1 > 0 is the constant defined in Lemma 3.14 and

δ−q (γ, 2) = δ0 +
1

2[L : FLK]

v2(e
−
1 )∑

i=0

1∑
j=0

(−1)j(2i+j , h)

2i+j
· B(2j , 2i),

where B(2j , 2i) = [σ2j ,2iexists and 2∥f2j ,2i ] if i ≥ 1, BN (2, 1) = [σ2,1 exists], BN (1, 1) = 1,
and δ0 = 0 if F2,2 = Fq2, and otherwise,

δ0 =
1

4
− [σ2,1 exists]

4[L2,2 : L]
.

Necessary and sufficient conditions for the existence of σ2,1 are given in Theorem 3.25.

Proof. As usual, we study the sum

RN =
1

N

N∑
n=1

R−
q (γ, 2, n)

qn/n
.

We write S1(N) and S2(N) for the parts with odd and even indices respectively. From
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Theorem 3.25, we see that S2(N) = 0 if F2,2 = Fq2 . Otherwise, we have∣∣∣∣S2(N)−
(
1

4
− [σ2,1 exists]

4[L2,2 : L]

)∣∣∣∣ ≤ ( 4c1√
q − 1

+
1

4

)
1

N
,

by following the proof of Corollary 3.26, and since

1

N

N∑
n=1
2|n

(
1

2
− [σ2,1 exists]

2[L2,2 : L]

)
=

(
1

4
− [σ2,1 exists]

4[L2,2 : L]

)
+ f(N),

for some f(N) ≤ 1/4N .
For the sum S1(N), we first prove that Bn(2

j , 2i), which was defined in Lemma 3.28,
does not depend on n when i ≥ 1. By Theorem 3.7 and Lemma 3.12, we have

f2j ,2i =
2i+2

(q2 − 1, 2i+1)
· (2i+j , h)

(indFL(ζ2i+1 )(µ), 2
i+j , h)

.

We see that f2j ,2i = 2m for some m ≥ 1. However, the condition n ≡ f2j ,2i/2 (mod f2j ,2i),
which appears in the expression of Bn(2

j , 2i) has to take into account the parity of n to
hold. Since n is odd, this happens if and only if 2∥f2j ,2i . Hence

Bn(2j , 2i) = [σ2j ,2iexists and 2∥f2j ,2i ] =: B(2j , 2i),

for all odd n ≥ 1. The expression of δ−q (γ, 2, n) in Lemma 3.28 does not have any depen-
dence on n. We write δ− := δ−q (γ, 2, n). We find that∣∣∣∣S1(N)− δ−

2

∣∣∣∣ ≤ (4c1τ(e
−
1 )√

q − 1
+

3δ−

2

)
1

N
,

for all N ≥ 1, where we followed the method used for S2(N). Finally, since δ− must be
less than or equal to 1, we obtain

|RN − δ−q (γ, 2)| ≤
∣∣∣∣S1(N)− δ−

2

∣∣∣∣+ |S2(N)− δ0| ≤
(
8c1τ(e

−
1 )√

q − 1
+

7

4

)
1

N
,

the result we sought.

3.4 On the d1 and d2-densities

The purpose of this section is to prove that the d1 and d2-densities of Rq(γ, d) do not exist
except in some trivial cases. Because the d1 and d2-densities are equivalent, see [4, Theorem
A], we will work with d1 only. Let us consider the case d = 1. Since 1 always divides ρU (P )
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for primes P ∤ ∆a2, we have
Rq(γ, 1, N) = IN − aN ,

for all N ≥ 1, where aN counts primes P of degree N such that P | ∆a2. Note that aN is
zero for all, but a finite number of N ’s. Hence, as expected, the quotient Rq(γ, 1, N)/IN

converges to 1 as N → +∞ and d1(Rq(γ, 1)) = 1.
Another trivial case arises when γ is a constant in L, say ζ ∈ FL. We have a = ζb, and

by Lemma 2.2, this is equivalent to U being a degenerate Lucas sequence. In that case,
the rank of any prime P in U is equal to ordF×

L
(ζ). We obtain

Rq(ζ, d,N) =

IN − aN , if d | ordF×
L
(ζ);

0, otherwise,

for all N ≥ 1. We conclude that d1(Rq(ζ, d)) is either 1 or 0, depending on whether
d | ordF×

L
(ζ) or not, respectively. Note that it includes Lucas sequences for which a21/a2 is

a constant in K.
Lastly, when p | d, there is no prime P ∤ ∆a2 such that d | ρU (P ). This is because

the rank of P divides NP − ϵP , which is congruent to ±1 modulo p. Hence, we have a
d1-density equal to 0 in that case.

We now tackle the general case. We need the following lemma on the multiplicativity
of the function [fu,v | N ] of the variable u, u | d, where N ≥ 1 is an integer and v | d∞:

Lemma 3.30. Let N ≥ 1 be such that f1,v | N . Then, the function u 7→ [fu,v | N ] is
multiplicative for all v | d∞.

Proof. It suffices to prove that fu1u2,v = [fu1,v, fu2,v] for coprime u1, u2 | d. Indeed, it will
follow that fu1u2,v | N if and only if both fu1,v and fu2,v divide N . Recall that µ ∈ F×

L is
the sign of γ in L∞ and [FL : Fq] is denoted by the letter i. We have

indFL(ζdv)×(µ) =
qr − 1

m
,

where r = i · orddv(qi) and m = ordFL(ζdv)×(µ) = ordF×
L
(µ). Moreover, we note that

(uv, h) = (v, h)

(
uv

(v, h)
,

h

(v, h)

)
= (v, h)

(
u,

h

(v, h)

)
,

for all u | d. From the above and by Theorem 3.7, we obtain

fu,v =
r(uv, h)(

qr−1
m , uv, h

) =
r(v, h)

(v,Hr)
·

(
u, h

(v,h)

)
(
u, Hr

(v,Hr)

) , (3.16)
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for all u | d, where Hr := (h, (qr − 1)/m). It follows that

[fu1,v, fu2,v] =
r(v, h)

(v,Hr)
·


(
u1,

h
(v,h)

)
(
u1,

Hr
(v,Hr)

) ,
(
u2,

h
(v,h)

)
(
u2,

Hr
(v,Hr)

)
 .

Since u 7→ (u, k) is a multiplicative function for a fixed integer k and (u1, u2) = 1, the lcm
is equal to the product of the two numbers. Hence [fu1,v, fu2,v] = fu1u2,v.

Theorem 3.31. Assume d ≥ 2, p ∤ d, and γ ̸∈ FL. Then, the set Rq(γ, d) does not have
a d1-density, nor a d2-density.

Proof. It suffices to show that the quotient

Rq(γ, d,N)

qN/N
=
R+

q (γ, d,N)

qN/N
+
R−

q (γ, d,N)

qN/N
(3.17)

converges to different limits for disjoint subsequences. First, by Theorem 3.15, we have∣∣∣∣∣R+
q (γ, d,N)

qN/N
− δ+q (γ, d,N)

∣∣∣∣∣ ≤ 2ω(d)+1c1 · τ(e+N )q−N/2,

for all positive N ≡ 0 (mod f). By Lemma 3.11, we see that τ(e+N ) = Od(N). Therefore,
the quotient of R+

q (γ, d,N) by qN/N in (3.17) has limit l if and only if δ+q (γ, d,N) has
limit l, as N → +∞. By (3.4), for numbers of the form N = fLw(1 + nd), where n ≥ 0

and w | d∞, we have

δ+q (γ, d,N) =
1

[L : FLK]

∑
v|e+fLw

∑
u|d

µ(u)(uv, h)

uv
· [fu,v | fLw] = δ+w ,

which only depends on w. Secondly, note that if d ≥ 3, then R−
q (γ, d,N) = 0 for all

integers N = fLw(1 + nd). This is either because N ̸≡ f/2 (mod f) if 2 | f , or because of
Lemma 3.20 otherwise. If d = 2, we may choose N to be even, so that

lim
N→+∞

R−
q (γ, 2, N)

qN/N
=

1

[L2,2 : F2,2K]
,

if a2 ̸∈ (K×)2, or R−
q (γ, 2, N) = 0 otherwise, by Theorem 3.25. What is important to

notice is that the quotient of R−
q (γ, 2, N) by qN/N has a limit L ≥ 0 that does not depend

on w in those cases.
Now, it suffices to show that δ+w1

̸= δ+w2
for a good choice of w1 and w2 to prove the

theorem. First, note that fv := f1,v divides fu,v for all u | d. This is because Fdv,v is a
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subfield of Fdv,uv. Hence

δ+w =
1

[L : FLK]

∑
v|e+fLw

fv |fLw

∑
u|d

µ(u)(uv, h)

uv
· [fu,v | fLw].

By Lemma 3.30, the function u 7→ µ(u)(uv, h)[fu,v | fLw]/u(v, h) is multiplicative and

δ+w =
1

[L : FLK]

∑
v|e+fLw

fv |fLw

(v, h)

v

∏
l|d

(
1−

(lv, h)[fl,v | fLw]
l(v, h)

)
.

Let w1, w2 | d∞ be such that w1 | w2 and w1 < w2. We have e+fLw1
| e+fLw2

since (qn−1)n≥0

is a divisibility sequence. Therefore, we have

δ+w2
= δ+w1

+
1

[L : FLK]

∑
v

′ (v, h)

v

∏
l|d

(
1−

(lv, h)[fl,v | fLw2]

l(v, h)

)
, (3.18)

where
∑ ′ is taken over all v | e+fLw2

such that v ∤ e+fLw1
and fv | fLw2. We show that the

sum on the right-hand side of the equality is positive for a good choice of w1 and w2.
Assume that d ≥ 3 and put w1 = f̄L(h, d

∞)/fL, where f̄L := [[FL : Fq], ordd(h,d∞)(q)].
Note that w1 | d∞ because f̄L = fLm for some m | d∞, by Lemma 3.11. Next, we let l0
be a prime that divides d such that l0 ≥ 3 if d has an odd prime. Let k > vl0(e

+
fLw1

) be
an integer and w2 = lk0w1. Thus, we have e+fLw2

= e+fLw1
lk0ν, where ν is a power of 2, by

Lemma 3.11. Now, if we put v := (h, d∞)lk0 , we see that v | e+fLw2
and v ∤ e+fLw1

. It remains
to show that fv | fLw2. With i = [FL : Fq], we have

fv =
iorddv(q

i)(v, h)

(indFq(ζdv)×(µ), v, h)
=

iorddv(q
i)(h, d∞)

(indFq(ζdv)×(µ), h, d
∞)

,

which divides iorddv(qi)(h, d∞) = (h, d∞)[i, orddv(q)]. By Lemma 3.12 with d = d(h, d∞)

and v = lk0 , we have

orddv(q) =
f̄d(h, d∞)lk0

(qf̄ − 1, d(h, d∞)lk0)
= f̄ lk0 ·

(
qf̄ − 1

d(h, d∞)
, lk0

)−1

,

where f̄ = ordd(h,d∞)(q). The factor 2 that is present in some cases of Lemma 3.12 does
not appear here because l0 is odd when d ∤ 2∞, and [P(f̄)] = 0 when d = 2α, α ≥ 2. It



45

follows that orddv(q) | f̄ lk0 , so that

fv | (h, d∞)[i, f̄ lk0 ] = (h, d∞) ·

f̄Llk0 , if d ∤ 2∞;

f̄2k, otherwise,

because k ≥ 1. In both cases, we obtain fv | (h, d∞)f̄Ll
k
0 = fLw2. Therefore, the general

term in v = (h, d∞)lk0 does appears in (3.18) and is equal to

1

lk0

∏
l|d

(
1−

[fl,v | fLw2]

l

)
,

using that (lv, h) = (v, h) = (h, d∞) for all l | d. Regardless of whether fl,v | fLw2 or not,
the general term is always positive and δ+w2

> δ+w1
. Finally, let (xn)n≥0 and (yn)n≥0 be

defined by xn = fLw1(1 + nd) and yn = fLw2(1 + nd) for all n ≥ 0. Then,

Rq(γ, d, xn)

qxn/xn
and

Rq(γ, d, yn)

qyn/yn

are subsequences of (3.17) that converges to δ+w1
and δ+w2

respectively, since R−
q (γ, d,N) = 0

when d ≥ 3 and f | N . The d1-density of R+
q (γ, d) does not exist because δ+w1

̸= δ+w2
.

Assume that d = 2. The method is the same, but with w1 = 2f̄L(h, 2
∞)/fL to make

sure that w1 is even. We let w1 = 2kw1, where k > v2(e
+
fLw1

). As in the d ≥ 3 case, we
see that v = (h, 2∞)2k divides e+fLw2

, but not e+fLw1
. We use that fv | (h, 2∞) · [i, ord2v(q)]

again to show that fv | fLw2. By Lemma 3.12, we have

ord2v(q) =
2k+v2(h)+1cf̄

(qcf̄ − 1, 2k+v2(h)+1)
,

where c = 1 + [q ≡ 3 (mod 4)]. We see that ord2v(q) | 2k+1f̄ , so that fv divides

(h, 2∞) · [i, 2k+1f̄ ] = (h, 2∞) · 2k+1f̄ .

Thus, we obtain fv | 2k+1f̄L(h, 2
∞) = fLw2. The rest of the proof follows the same path

as the case d ≥ 3, with the same subsequences. Note that this time, the quotient in (3.17)
converges to δ+w1

+ L and δ+w2
+ L respectively, which are distinct.
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Chapter 4

Explicit results for the d3-density

In this chapter, we compute closed-form formulas for the d3-densities in the non-trivial
cases. Indeed, we obtained formulas (3.5) and (3.9) that involve non-trivial boolean func-
tions and an infinite series over divisors of d∞. Our goal is to remove both dependencies
when possible.

Recall that γ = µγ̃h0 for some µ ∈ FL and γ̃0 ∈ L, γ̃0 is monic in L∞ and is not a power
in L. This makes h ≥ 1 maximal. When L/K is geometric, we have

NL/K(γ) = µ2NL/K(γ̃0)
h = 1.

Hence µ2 = λh for some λ ∈ Fq and γ = ±λh/(2,h)γ̃h0 . For simplification, we would prefer
γ to be an h-th power in L. Therefore, we define the boolean function

b(h) = [λh/(2,h) ̸∈ (F×
q )

h and − λh/(2,h) ̸∈ (F×
q )

h].

If b(h) = 0, then γ or −γ is an h-th power. The following theorem allows us to switch
between γ and −γ with no loss of generality:

Theorem 4.1. For every d ≥ 2, we have

δq(γ, d) =

δq(−γ, 2d) + δq(−γ, d/2)− δq(−γ, d), if 2∥d;

δq(−γ, d), otherwise.

Proof. By Lemmas 2.5 and 2.9, we have

ρU (P ) =


ordp(−γ)/2, if 2 ∤ ρU (P );

2ordp(−γ), if ρU (P ) ≡ 2 (mod 4);

ordp(−γ), if 4 | ρU (P ).
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First, we have ρU (P ) = ordp(−γ) when 4 | d and d | ρU (P ). Moreover, when d is odd,
we have d | ρU (P ) if and only if d | ordp(−γ). Hence Rq(γ, d) = Rq(−γ, d) and the result
follows. Finally, when 2∥d, the set Rq(γ, d) is the union of the sets

A1 = {P ∈ P+ : P ∤ a2∆ and 2d | ρU (P )},

and A2 = Rq(γ, d) \ A1. Any P ∈ A1 satisfies 4 | ρU (P ), so that ρU (P ) = ordp(−γ).
Hence, we have A1 = Rq(−γ, 2d). For A2, we see that any P in this set satisfies

d | ρU (P ) and 2d ∤ ρU (P ).

It follows that ρU (P ) = 2ordp(−γ), and P ∈ A2 if and only if

d | 2ordp(−γ) and d ∤ ordp(−γ).

We find that A2 = Rq(−γ, d/2) \Rq(−γ, d). The result follows by taking the d3-density of
these sets, which exists by our results in Sections 3.2 and 3.3.

c
We saw in Remark 2.10, that −γ is associated with the Lucas sequence U(∆,−a2∆).

Thus, it makes sense to consider δq(−γ, d) and to use Theorem 4.1.
Next, we note that Corollary 3.26 actually provides density results for many other

cases. Indeed, we have the following:

Theorem 4.2. If q ≡ 1 (mod 4), 2 | d, and a2 ∈ (K×)2, then δ−q (γ, d) = 0.

Proof. Since d | ρU (P ) and 2 | d, we see that R−
q (γ, d) is a subset of R−

q (γ, 2). Call x a
square root of a2 in K. By Corollary 3.26, we have

δ−q (γ, d) ≤ δ−q (γ, 2) =
1

2
− [σ2,1 exists]

2[L2,2 : L]
.

Since a2 ∈ (K×)2, we have L2,2 = L. Moreover, by Theorem 3.25, the automorphism σ2,1

exists if and only if σL(γ1/2) = γ−1/2. We have NL/K(γ1/2) = NL/K(a/x) = a2/x
2 = 1.

Thus, we see that σ2,1 exists and δ−q (γ, d) ≤ 0.

For the rest of this chapter, we assume that a2 ̸∈ (K×)2 when q ≡ 1 (mod 4) and 2 | d.
For convenience, we do not state this assumption in the many results of this chapter that
are related to the study of R−

q (γ, d). However, it will be restated at the beginning of the
concerned sections, and when we summarise our results.

In the first section, we prove three important preliminary results, namely, Lemma 4.4,
Lemma 4.5 and Lemma 4.6. The first one provides our main tool for the cases b(h) = 1 and
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L = Fq2(T ). The second and third are about expressing certain sums into Euler products.
This simplifies many calculations for the obtention of the closed-form formulas.

In our second section, we find necessary and sufficient conditions for the automorphisms
σu,v defined in Section 3.3 to exist.

As a consequence of Theorem 4.1, we study the case b(h) = 0 under the assumption
that γ is an h-th power in Section 4.3. To prevent repetition, we treat the case L = K in
the same section. However, we are not able to obtain a closed-form formula in all cases
when L = K, while no case is missing from the case b(h) = 0. Recall that R−

q (γ, d) is not
empty only if d ∤ qk + 1 for some k ≥ 1. Thus, we assume the existence of such integer k
throughout this chapter. Under this assumption, Lemma 3.20 shows that only the cases
d = 2, or 2 | f and (d, q − 1) ≤ 2 need to be treated.

In Section 4.4, we study the case b(h) = 1. We add constants to L and K by adjoining
the square root of λ. This allows for γ to be an h-th power in Fq2L. Then, we are able to
link δq2(γ, d) to δq(γ, d) using a result of Section 4.3. A few cases remain to obtain the full
density, but they are free of most difficulties.

We look at the case L = Fq2(T ) in Section 4.5. As in the case b(h) = 1, there is a
connection between δq2(γ, d) and δq(γ, d) that leaves only a few simple cases to work on.
We are able to obtain an explicit formula for all γ, except for some very specific cases.

In the last section, we provide some algorithms to compute every constant that appear
in the closed-form formulas. For instance, the first algorithm allows us to compute the
constant h associated to γ for any given a1, a2 ∈ A under our main hypotheses. Moreover,
we compute b(h) and other constants yet to be defined.

4.1 Preliminary results

We first prove a result that will link Rq(γ, d,N) to Rq2(γ, d,N) for all N ≥ 1. This will
be useful to write the d3-density of Rq(γ, d) in terms of d3(Rq2(γ, d)). Secondly, we prove
a few formulas on sums and Euler products.

Lemma 4.3. Let P ∈ P+ and p | P be a prime in L. Then ρU (P ) = ρU (p).

Proof. There is nothing to do if P is inert in L. Assume that P = pσL(p), where σL is the
non-trivial automorphism of L/K. If P | Un for some n ≥ 2, then p | Un as well. Hence,
we have ρU (p) | ρU (P ). For the converse, if p divides some Un, then σL(p) must divide Un

because Un ∈ K. It follows that P | Un and ρU (P ) = ρU (p).

Lemma 4.4. For all N ≥ 1, we have

Rq2(γ, d,N) = 2Rq(γ, d, 2N) +

Rq(γ, d,N), if 2 ∤ N ;

0, if 2 | N.
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Proof. Let P ∈ P+ be counted by Rq(γ, d, 2N). Since deg(P ) = 2N is even, we know
from [29, Proposition 8.13] that P splits completely in Fq2(T ). Let p be a prime lying
above P in Fq2(T ). By Lemma 4.3 both p and σL(p) are counted by R±

q2
(γ, d,N). Hence

Rq2(γ, d,N) = 2Rq(γ, d, 2N) + S(N),

where S(N) denotes the number of primes p counted by Rq2(γ, d,N) such that P = p∩K
is inert in Fq2(T ). By [29, Proposition 8.13], and since deg(P ) = deg(p), we see that S(N)

is zero when 2 | N . When 2 ∤ N , we have S(N) = Rq(γ, d,N) by Lemma 4.3 again.

In the next lemma, we find a product formula for a sum which is a variation of a series
computed by Sanna in the proof of [30, Lemma 5.4], which was already a generalisation of
result of Moree, [21, Lemma 4]. We follow their method.

Lemma 4.5. Let d, e, h,m ≥ 1 be integers and define the sum

Sd,e,h(m) =
∑

v|(m,d∞)
e|v

∑
u|d

µ(u)(uv, h)

uv
.

Then, we have

Sd,e,h(m) =


(h, d∞)

[e, (h, d∞)]

∏
l|d

(
1− lvl([e,(h,d

∞)])

lvl(m)+1

)
, if [e, (h, d∞)] | (m, d∞);

0, otherwise.

Proof. Clearly, when e ∤ (m, d∞), the outer sum is an empty sum, thus Sd,e,h(m) = 0.
Hence, we assume e | (m, d∞). The function defined by

u 7→ µ(u)

u
· (uv, h)
(v, h)

is multiplicative. We use the Euler product formula on Sd,e,h(m) to obtain

Sd,e,h(m) =
∑

v|(m,d∞)
e|v

(v, h)

v

∑
u|d

µ(u)(uv, h)

u(v, h)
=

∑
v|(m,d∞)

e|v

(v, h)

v

∏
l|d

(
1− (lv, h)

l(v, h)

)
.

We see that the product is non-zero if and only if (h, d∞) | v. Indeed, if l | (h, d∞) is such
that vl(v) < vl(h), then vl(lv) ≤ vl(h) and (lv, h) = l(v, h). We see that Sd,e,h(m) = 0 for
all m ≥ 1 such that (h, d∞) ∤ m. Therefore, when both e and (h, d∞) divide (m, d∞), that
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is, when e0 := [e, (h, d∞)] | (m, d∞), we have

Sd,e,h(m) =
φ(d)

d

∑
v|(m,d∞)

e0|v

(v, h)

v
=
φ(d)(h, d∞)

de0

∑
e0v|(m,d∞)

1

v
,

where we used that (v, h) = (h, d∞) because e0 | v. We apply the Euler product one last
time to the sum to obtain

∑
e0v|m

1

vv
=

∏
e0l|(m,d∞)

vl(m/e0)∑
r=0

1

lr

 =
∏

e0l|(m,d∞)

(
1− l−vl(m/e0)−1

1− l−1

)
.

Since (m, d∞)/e0 divides d∞, we may replace the index of the product by l | d. Indeed,
the only instance it could be a problem is when l | d, but l ∤ (m, d∞)/e0. However, we
see that the general term in the product is equal to 1 in that case. The result follows by
taking (1− l−1)−1 out of the product, which yields a factor of d/φ(d).

Lemma 4.6. Let f̄ = ordd(h,d∞)(q). We have

D(d) :=
∑
ν|d∞

∑
u|d

µ(u)(dh, u∞)

u(qf̄ − 1, u∞)ν(ν, u∞)
=

d

φ(d)

∏
l|d

(
1− lvl(dh)

(l + 1)lvl(qf̄−1)

)
.

Proof. Using (dh, u∞) ≤ (qf̄ − 1, u∞), we obtain the inequality

∑
ν|d∞

∑
u|d

∣∣∣∣ µ(u)(dh, u∞)

u(qf̄ − 1, u∞)ν(ν, u∞)

∣∣∣∣ ≤ ∑
ν|d∞

∑
u|d

1

ν
=
τ(d)φ(d)

d
,

which shows that the series is absolutely convergent. We may now interchange the sum
symbols in the expression. We obtain

D(d) =
∑
u|d

µ(u)(dh, u∞)

u(qf̄ − 1, u∞)

∑
ν|d∞

1

ν(ν, u∞)
.

Let S(u) denote the inner series. The function ν 7→ ν(ν, u∞) is multiplicative, thus

S(u) =
∏
l|d

(∑
r≥0

1

lr(1+[l|u])

)
=
∏
l|d

(
1− 1

l1+[l|u]

)−1

.
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Separating the primes l | u from those that do not divide u, we obtain

S(u) =
∏
l|d
l∤u

(
l

l − 1

)∏
l|u

(
l2

l2 − 1

)
=
∏
l|d

(
l

l − 1

)∏
l|u

(
l

l + 1

)
=

du

φ(d)ψ(u)
,

where ψ is the Dedekind psi function. Finally, going back to D(d), the result follows by
using the Euler product formula on the remaining sum.

4.2 Existence of the good automorphisms

In this section, we assume [L : K] = 2. We give necessary and sufficient conditions for the
existence of σ ∈ Gal(Ln,d/K) such that σ(a) = b, σ(ζn) = ζ−1

n , and σ(γ1/d) = γ−1/d. The
search for such conditions is justified by Theorems 3.22 and Lemma 3.28, which correlate
these automorphisms to the primes counted by R−

q (γ, d,N). We construct σ step by step
by extending an automorphism of K(ζn) to L(ζn), and then to Ln,d.

Lemma 4.7. Assume n ≥ 3. Then, there exists σ ∈ Gal(L(ζn)/K) such that σ(a) = b

and σ(ζn) = ζ−1
n if and only if

(1) (n, q − 1) ≤ 2;

(2) 2 | ordn(q), if L/K is geometric;

(3) 2∥ordn(q), if L = Fq2(T ).

Proof. Let us first construct σ0 ∈ Gal(K(ζn)/K) such that σ0(ζn) = ζ−1
n . The minimal

polynomial of ζn over Fq is given by

Φn(X) =

ordn(q)−1∏
i=0

(X − ζqin ).

For σ0 to send ζn to ζ−1
n , we need that ζ−1

n = ζq
i

n for some 0 ≤ i ≤ ordn(q)− 1. Following
the proof of Lemma 3.20, we see that n | qi +1 holds if and only if (n, q− 1) ≤ 2, in which
case ordn(q) = 2i. If L/K is geometric, then f(X) = X2 − a1X + a2 remains the minimal
polynomial of a over K(ζn). Therefore, because L(ζn) ∼= K(ζn)/(f(X)), we can extend σ0
in exactly two ways to σ ∈ Gal(L(ζn)/K) such that σ|K(ζn) = σ0 and such that σ sends a
to one of the root of σ0f = f . It suffices to choose the root b. If L = Fq2(T ), we proved
that 2 | ordn(q), so L(ζn) = K(ζn). Therefore, we see that σ0 is the right automorphism
if and only if σ0|L ̸= id. We write M = L(ζn) and let H ◁ Gal(M/K) be the subgroup
generated by σ0. It is easy to see that the field

MH = {x ∈M : ∀σ ∈ H,σ(x) = x} = {x ∈M : σ0(x) = x}
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is equal to K(ζn+ζ
−1
n ), since σ0(ζn+ζ−1

n ) = ζn+ζ
−1
n and because X2− (ζn+ζ

−1
n )X+1 is

the minimal polynomial of ζn over MH . Hence σ0|L ̸= id if and only if L ̸⊂ MH . We are
dealing with constant field extensions of K, thus this is equivalent to Fq2 ̸⊂ Fq(ζn + ζ−1

n ),
which happens if and only if [MH : K] = ordn(q)/2 is odd.

Note that the condition (n, q − 1) ≤ 2 makes sense as R−
q (γ, d) is empty for all d ≥ 3

such that (d, q − 1) ≤ 2 by Lemma 3.20.

Theorem 4.8. Let n ≥ 3. There exists σ ∈ Gal(Ln,d/K) such that σ(a) = b, σ(ζn) = ζ−1
n ,

and σ(γ1/d) = γ−1/d if and only if

(1) (n, q − 1) ≤ 2;

(2) 2 | ordn(q) if L/K is geometric;

(3) 2∥ordn(q), if L = Fq2(T );

(4) and σ0(γ1/(d,h)) = γ−1/(d,h), where σ0 is defined in Lemma 4.7.

Proof. By Lemma 4.7, there exists σ0 ∈ Gal(L(ζn)/K) satisfying the first two properties
if and only if (1) and one of (2) and (3) hold. It suffices to prove that σ0 can be extended
to the right automorphism if and only if (4) holds. Put d0 = d/(d, h). We claim that

f(X) = Xd0 − ω

is the minimal polynomial of γ1/d over L(ζn), where ω is a (d, h)-th root of γ in L(ζn). First,
since γ = µγ̃h0 , we have ω = µ1/(d,h)γ̃h0

0 , where h0 = h/(d, h). Moreover, by [29, Proposition
8.13], we know that∞ is inert and has degree 1 in M := L(ζn). Therefore, the completion
of M with respect to v∞ is given by M∞ = FL(ζn)((π)), where π is a uniformizer of ∞.
It follows that ω̃ = γ̃h0

0 ∈ L because γ̃0 ∈ L∞ ⊂ M∞. We are now ready to prove the
irreducibility of f(X). Let l | d0 be a prime, and assume that ω ∈ (M×)l. Then, we have
ω̃ ∈ (M×)l as well. By Theorem 3.3, since L(ω̃1/l) is a constant field extension of L, we
may write ω̃ = uxl for some u ∈ FL and x ∈ L. Hence γ̃h0

0 = x̃l, and by the maximality of
h, we obtain l | h0. This contradicts (d0, h0) = 1. Now, if ω = −4y4 for some y ∈ L(ζn),
it follows that ω̃ is a square in L using the same method. This contradicts the above and,
by Theorem 3.4, the polynomial f(X) is irreducible over FL(ζn). Finally, since we have
Ln,d

∼= L(ζn)[X]/(f(X)), we can extend σ0 to the right automorphism σ if and only if
γ−1/d is a root of (σ0f)(X) = Xd0 − σ0(ω), that is, if and only if σ0(ω) = ω−1.

We will later see that conditions (2) and (3) are easily satisfied in our calculations.
However, the last condition is too weak at the moment to be used efficiently, as there
is a dependence on n and d. In most cases, we will be able to reduce it to a simple
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condition involving σL and the divisibility of d by a power of 2. Let h1 = (h, 2∞). The
next proposition deals with the case L/K geometric and q ̸≡ 1 (mod 4). The following
lemma is useful to prove the proposition and other later results when q ≡ 1 (mod 4):

Lemma 4.9. Assume that L/K is geometric. Then, we have σ0(γ1/(d,h)) = γ−1/(d,h) if
and only if σ0(γ1/α) = γ−1/α, where α = (d, h, 2∞) and σ0 is defined in Lemma 4.7.

Proof. Let D = (d, h), so that α = (D, 2∞). One way is trivial by taking the (D/α)-th
power of both sides of σ0(γ1/D) = γ−1/D. Assume that σ0(γ1/α) = γ−1/α and define

L′ =

L, if b(h) = 0;

Fq2L, if b(h) = 1.

Then, we have σ0(γ1/D) = σL′(γ1/D) = ζkD/αγ
−1/D for some k ∈ Z and ζD/α ∈ L′, where

σL′ = σ0|L′ . Note that we know that γ1/D ∈ L′ because it has the form γ = λh/(2,h)γ̃h0 .
Taking the α-th power in the equality, we see that

σL(γ
α/D) = ζαkD/αγ

−α/D,

where γα/D now belongs to L. But (D/α, q − 1) = 1 by hypothesis, so ζαkD/α = 1. Now,
since α and D/α are coprime, we have ζkD/α = 1 as well, and the claim follows.

Proposition 4.10. Assume L/K geometric, b(h) = 0, and q ̸≡ 1 (mod 4). Then, condi-
tion (4) of Theorem 4.8 is equivalent to the following:

(1) h1 ∤ d; or

(2) h1 | d and σL(γ1/h1) = γ−1/h1.

Proof. Let α = (d, h, 2∞). By Lemma 4.9, we can replace condition (4) of Theorem 4.8
with σ0(γ

1/α) = γ−1/α. It suffices to show that the equality σL(γ
1/α) = γ−1/α holds if

h1 ∤ d. Since σ0(γ) = γ−1 and γ1/α ∈ L, we have

σ0(γ
1/2α) = σL(γ

1/2α) = ζi2αγ
−1/2α,

for some i ∈ Z and ζ2α ∈ L. We have (α, q−1) ≤ 2, so that ζiα = ±1. Squaring both sides,
we obtain σ0(γ1/α) = γ−1/α.

One may ask where the assumption q ̸≡ 1 (mod 4) was used. It turns out that the
case q ≡ 1 (mod 4) could be treated similarly, but we decided to hold on to that for now.
In the following, we will show that even simpler conditions can be found under specific
assumptions made in the various sections.
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4.3 The case L = K or b(h) = 0

Throughout this section, we assume that fu,v = orddv(q) for all u | d and v | d∞. Note
that this is always the case when L/K is geometric and b(h) = 0. Indeed, since γ is an
h-th power in L, so is its sign µ in Fq. Therefore, we have

indFq(ζdv)×(µ) = (qorddv(q) − 1, h) · indFq(ζdv)×(ϵ),

where ϵh = µ. Since (uv, h) divides the right-hand side, and by Theorem 3.7, we obtain

fu,v =
orddv(q)(uv, h)

(indFq(ζdv)×(µ), uv, h)
= orddv(q).

However, this may not always be the case when L = K. We provide sufficient condition for
our assumption to hold at the end of the subsection. We first prove a closed-form formula
for δ+q (γ, d), which holds if L/K is geometric and b(h) = 0, or L = K. Then, we find a
closed-form formula for δ−q (γ, d) in the geometric case, as R−

q (γ, d) is empty if L = K.

4.3.1 The formula for δ+q (γ, d)

Let us now define η : Z2
>0 −→ Z>0 by η(m,n) = 2v2(q

f̄+1)−1 if P(f̄) is true and 2 | (m,n),
and by η(m,n) = 1 otherwise. Here, f̄ = ordd(h,d∞)(q). Note that m 7→ η(m,n) is a
multiplicative function for all n ≥ 1.

Lemma 4.11. Assume fu,v = orddv(q) for all u | d and v | d∞. For each w | d∞, we have

δ+w =
1

[L : K]
·


∑
u|d

µ(u)(dh, u∞)

u(qf̄ − 1, u∞)(ν, u∞)η(ν, u)
, if fw = f̄ν, for some ν | d∞;

0, otherwise.

If fw = f̄ν, we may denote δ+w by δ(ν) when it is written in the above form to make the
dependence on ν clearer.

Proof. Since fu,v = orddv(q), and because v | e+fw if and only if orddv(q) | fw, we obtain
from (3.4) that δ+w becomes

δ+w =
1

[L : K]

∑
v|e+fw

∑
u|d

µ(u)(uv, h)

uv
=
Sd,1,h(e

+
fw)

[L : K]
,
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where the sum Sd,1,h(e
+
fw) was defined in Lemma 4.5. We obtain

δ+w =
1

[L : K]
·


∏
l|d

(
1− lvl(dh)

lvl(qfw−1)+1

)
, if (h, d∞) | e+fw;

0, otherwise,

from Lemma 4.5. However, we have (h, d∞) | e+fw if and only if f̄ | fw. By Lemma 3.12, we
have f̄ = fk for some k | d∞, and it follows that fw = f̄ν for some ν | d∞. The function

u 7→ µ(u)(dh, u∞)

u(qf̄ν − 1, u∞)

is multiplicative and, by the Euler product formula, we have

∑
u|d

µ(u)(dh, u∞)

u(qf̄ν − 1, u∞)
=
∏
l|d

(
1− lvl(dh)

lvl(qf̄ν−1)+1

)
= δ(ν).

We now apply Lemma 3.11 to (qf̄ν − 1, u∞) in the denominator of the general term of the
sum, which is allowed since u | qf̄−1. We obtain (qf̄ν−1, u∞) = (qf̄−1, u∞)(ν, u∞)η(ν, u),
and the result follows.

Theorem 4.12. Assume that fu,v = orddv(q) for all u | d and v | d∞. Then, we have

δ+q (γ, d) =
1

f̄ [L : K]

∏
l|d

(
1− lvl(dh)C [l=2]·[P(f̄)]

(l + 1)lvl(qf̄−1)

)
,

where C = 3 · 4−1 + 2−v2(qf̄+1)−1.

Proof. By Lemma 4.11, we may only consider indices w | d∞ that satisfy fw = f̄ν, ν | d∞,
in the expression of δ+q (γ, d). We obtain

δ+q (γ, d) =
φ(d)

d

∑
w|d∞

δw
fw

=
φ(d)

d

∑
ν|d∞

δ(ν)

f̄ν
.

If 2 ∤ d or [P(f̄)] = 0, then η(ν, u) is equal to 1. We obtain

δ+q (γ, d) =
φ(d)D(d)

df̄ [L : K]
,

and the result follows by Lemma 4.6, in which D(d) was defined. If 2 | d and [P(f̄)] = 1,
then we may interchange the series and the sum in δ(ν), by the argument used in the proof
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of Lemma 4.6. We have

δ+q (γ, d) =
φ(d)

df̄ [L : K]

∑
u|d

µ(u)(dh, u∞)

u(qf̄ − 1, u∞)

∑
ν|d∞

1

ν(ν, u∞)η(ν, u)
.

Let S(d, u) denote the inner series. We know that ν 7→ ν(ν, u∞)η(ν, u) is multiplicative.
Thus, d 7→ S(d, u) is also multiplicative. Moreover, we have η(ν, u) = η(rad(ν), u), where
rad is the radical of an integer function. Writing d′ = d/(d, 2∞), we obtain

S(d, u) = S(d′, u) ·
(
1 +

∑
r≥1

1

2r(1+[2|u])η(2, u)

)
,

Following the proof of Lemma 4.6, we show that S(d′, u) = S(d′, u′) = d′u′/φ(d′)ψ(u′). By
the properties of the φ and ψ functions, we have

S(d, u) =
3du

4φ(d)ψ(u)

(
1− 1

3 · 2v2(qf̄+1)−1

)[2|u]
=

duC [2|u]

φ(d)ψ(u)
.

Replacing S(d, u) by its new value in δ+q (γ, d), we find that

δ+q (γ, d) =
1

f̄ [L : K]

∑
u|d

µ(u)(dh, u∞)C [2|u]

ψ(u)(qf̄ − 1, u∞)
,

and the result follows by the Euler product formula.

Note that Theorem 4.12 matches [2, Theorem 3.3] and [3, Theorem 11] that Ballot
proved in the case γ = T and, respectively, d = 2 and d an odd prime.

Example 4.13. Let a1 = T , a2 = 1, q = 3, and d = 20. We have h = 2 and f̄ = 4. By
Theorem 4.12, the density of R+

3 (γ, 20) is equal to

δ+3 (γ, 20) =
1

8
·
(
1− 1

6

)2

=
25

288
= 0.086805̄.

We made the following computation:

1

8

8∑
n=1

R+
3 (γ, 20)

3n/n
≈ 0.085493,

which matches the value of δ+3 (γ, 20). Moreover, since 20 ∤ 3k+1 for every k ≥ 1, it follows
from Section 3.3 that R−

3 (γ, 20) is empty. Hence δ3(γ, 20) = 25/288.

We successfully proved a closed-form formula for δ+q (γ, d). However, the assumption
that the degree of Fdv,uv over Fq is equal to orddv(q) for all v | d∞ and u | d was used.
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We have seen that it always holds when L/K has degree two and b(h) = 0. The following
proposition provides sufficient conditions for this equality to hold.

Proposition 4.14. Assume L = K, and either (h, d) = 1 or (ordF×
q
(µ), d) = 1. Then, we

have fu,v = orddv(q) for all u | d and v | d∞.

Proof. By Theorem 3.7, we have

fu,v = [Fdv,uv : Fq] =
orddv(q)(uv, h)

(indFq(ζdv)×(µ), uv, h)
.

If (d, h) = 1, then (uv, h) = 1 and the result follows. If (ordF×
q
(µ), d) = 1, then the order

of µ in Fq(ζdv)
× is equal to ordF×

q
(µ). Hence

indFq(ζdv)×(µ) =
qorddv(q) − 1

ordF×
q
(µ)

. (4.1)

We see in (4.1) that uv divides indFq(ζdv)×(µ). Indeed, uv | dv and (ordF×
q
(µ), uv) = 1

imply that ordF×
q
(µ) · uv | qorddv(q) − 1.

However, Proposition 4.14 is not enough to cover all cases. For instance, it does not
give any information about the density when L = K and (ordF×

q
(µ), d, h) > 1.

Example 4.15. Let a1 = 2T 2 +1, a2 = 2T 2, and q = 5. We have γ = 2T 2, and it follows
that µ = 2 and h = 2. Since ordF×

5
(2) = 4, any even d satisfies (ordF×

q
(µ), d, h) > 1.

Applying the formula of Theorem 4.12 with d = 2 would give a d3-density of 2/3. However,
our computations show that

1

6

6∑
n=1

R5(2T
2, 2, n)

5n/n
≈ 0.854677,

which deviates from the expected value of 2/3. For d = 21, the formula of Theorem 4.12
applies, giving δ+3 (γ, 21) = 77/576 = 0.1336805̄. We have

1

6

6∑
n=1

R5(2T
2, 21, n)

5n/n
≈ 0.128165,

which is relatively close to the value of δ+3 (γ, 21).

More numerical comparisons can be found in Appendix A.1. We experimented on
various other sequences in the case b(h) = 0. See Tables A.1, A.2, A.3, and A.4.
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4.3.2 The density δ−q (γ, d) when 2 | f and (d, q − 1) ≤ 2

From now on, we assume that L ̸= K and b(h) = 0. Recall our assumption that a2 is not
a square when q ≡ 1 (mod 4) and 2 | d. The closed-form formula for δ−q (γ, d) is obtained
using the formula for δ−w found in Section 3.3, i.e.,

δ−w =
1

[L : K]

∑
v|e−

fw/2

∑
u|d

µ(u)(uv, h)

uv
· B(u, v),

where B(u, v) = [σu,v exists] · [fw ≡ fu,v (mod 2fu,v)]. In our case, we have [L : K] = 2

and fu,v = orddv(q). The condition that fw ≡ fu,v (mod 2fu,v) becomes equivalent to v
dividing e+2fw, but not e+fw. Since (d, q − 1) ≤ 2, this is equivalent to v | e−fw/2. Therefore,
we may rewrite δ−w as

δ−w =
∑

v|e−
fw/2

∑
u|d

µ(u)(uv, h)

2uv
· [σu,v exists].

This sum is close to Sd,1,h(e−fw/2). To simplify it, we need to discuss the existence of the
σu,v automorphism.

By Theorem 4.8 and Proposition 4.10, we see that σu,v always exists in even character-
istic because it is assumed that p ∤ d. Indeed, condition (1) of Proposition 4.10 is always
satisfied for h1 ≥ 2. Otherwise, h1 = 1 and σL(γ1/h1) = γ−1/h1 trivially holds. Let

Q(n) = [h1 ∤ n] + [h1 | n and σL(γ1/h1) = γ−1/h1 ], (4.2)

for all n ≥ 1. We saw the importance of this boolean function in Proposition 4.10. For
instance, we have Q(uv) = 1 if and only if σu,v exists, when q ≡ 3 (mod 4). The existence
of σu,v remains to be determined when q ≡ 1 (mod 4). We have the following:

Lemma 4.16. Assume that q ≡ 1 (mod 4). Then, σu,v exists if and only if (dv, q−1) ≤ 2

and 2 ∤ (uv, h).

Proof. We only need to work on the last condition of Theorem 4.8. Note that we already
have 2 | orddv(q) because f is even. Moreover, the first condition (dv, q − 1) ≤ 2 implies
that v2(dv) ≤ 1 and v2(uv) ≤ 1. If α := (uv, h, 2∞) = 1, then clearly σ0(γ

1/α) = γ−1/α

and condition (4) of Theorem 4.8 holds by Lemma 4.9. If α = 2, we have 2 | h, which
is equivalent to a2 being a square in L. This is because γ = a2/a2 is an h-th power in L

when b(h) = 0. We easily see that a2 ∈ (L×)2 if and only if one of a2 and a2/∆ is the
square of an element in K, say x2. In the latter case, we have

σ0(γ
1/α) = σL(γ

1/2) = σL(a/x
√
∆) = −b/x

√
∆ = −γ−1/2.
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Thus, σu,v does not exist. The case a2 ∈ (K×)2 can not happen by our assumption at the
beginning of Subsection 4.3.2.

Lemma 4.17. Let d′ = d/(d, 2∞) and w | d′∞. Then 2δ−w = Sd′,1,h(e
−
fw/2) ·C0(d, h), where

C0(d, h) =


1, if 2 ∤ d, or q ≡ 1 (mod 4) and 2 | h;

0, if 2 | (d, h), q ≡ 3 (mod 4) and h1 ∤ 2e−f/2;

1− 2v2(dh)Q
2v2(q

f/2+1)+1
, otherwise,

and where Q = [σL(γ
1/h1) = γ−1/h1 ].

Proof. Let w | d′∞. Applying Proposition 4.10 and Lemma 4.16 to (3.8) yields

δ−w =
∑

v|e−
fw/2

∑
u|d

µ(u)(uv, h)

2uv
·


Q(uv), if q ≡ 3 (mod 4);

1, if 2 | q;

[2 ∤ (uv, h)], if q ≡ 1 (mod 4).

Note that we should have [(dv, q − 1) ≤ 2] · [2 ∤ (uv, h)] for q ≡ 1 (mod 4) in the above.
However, since dv | qfw/2 + 1, the condition (dv, q − 1) ≤ 2 is necessarily satisfied. If
2 ∤ (d, h), then it follows directly that 2δ−w = Sd,1,h(e

−
fw/2). When 2 | d and 2 ∤ h, we write

2δ−w = Sd′,1,h(e
−
fw/2)

(
1− 2v2(dh)

2v2(q
f/2+1)+1

)
,

since (h, d∞) is odd, which allows us to take out the l = 2 factor out with no other
assumption. Note also that v2(e−fw/2) = v2(e

−
f/2) since 2 ∤ w. For the rest of the proof, we

assume 2 | (d, h).
Assume that q ≡ 1 (mod 4). Then, we see that v is odd, so that 2 | (uv, h) if and only

if 2 | (u, h). We obtain [2 ∤ (uv, h)] = 1− [2 | u], and the part in the expression of δ−w that
corresponds to [2 | u] is equal to

∑
v|e−

fw/2

∑
u|d
2|u

µ(u)(uv, h)

2uv
= −

∑
v|e−

fw/2

∑
u′|d′

µ(u′)(u′v, h)

2u′v
.

We used v2(uv) = 1, so that (uv, h) = 2(u′v, h), where u′ = u/(u, 2∞). Thus, since e−fw/2

is odd, i.e., e−fw/2 | d
′∞, and by Lemma 4.5, we may write

2δ−w = Sd,1,h(e
−
fw/2) + Sd′,1,h(e

−
fw/2).
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Moreover, since 2 | (d, h), the sum Sd,1,h(e
−
fw/2) must be equal to zero because h1 ∤ e−fw/2.

Hence, we obtain δ−w = Sd′,1,h(e
−
fw/2)/2.

Assume that q ≡ 3 (mod 4). We write

δ−w =
∑

v|e−
fw/2

(v, h)

2v

∑
u|d

µ(u)(uv, h)Q(uv)
u(v, h)

,

and, given v | e−fw/2, let S(v) be the inner sum in the above expression. If v2(h) > v2(2v),
then Q(uv) = 1 for all u | d, and thus

S(v) =
∏
l|d

(
1− (lv, h)

l(v, h)

)
= 0,

because the l = 2 factor is equal to zero since (2v, h) = 2(v, h). It follows that δ+w = 0

when h1 ∤ 2e−fw/2. We can replace e+fw/2 by e−f/2 since w is odd and v2(e
−
fw/2) = v2(e

−
f/2)

using Lemma 3.11. Assume that h1 | 2e−f/2. With the convention 00 = 1, we have

2δ−w = QSd,h1,h(e
−
fw/2) +

∑′

v|e−
fw/2

∑
u|d

µ(u)(uv, h)Q[2|u]

uv
,

where
∑′

means that indices v are taken with 2-adic valuation equal to v2(h)−1. Here, we
used Q(uv) = Q for all u | d when h1 | v. This yields the left summand in the above. For
the sum on the right, we call it S0, we used Q(v) = 1 and Q(2v) = Q when v2(2v) = v2(h).
We now work on S0. We have

S0 =
∑′

v|e−
fw/2

(v, h)

v

∑
u|d

µ(u)(uv, h)Q[2|u]

u(v, h)
=
∑′

v|e−
fw/2

(v, h)S(v)

v
,

The general term of S(v) defines a multiplicative function in u. Therefore, the Möbius
sum S(v) seen as a function d 7→ S(v) := S(v, d) is also multiplicative. We obtain

S(v, d) = S(v, d′)S(v, 2v2(d)) = S(v, d′)
∑
u|2

µ(u)(uv, h)Q[2|u]

u(v, h)
= S(v, d′)(1−Q),

where we used (2v, h) = 2(v, h) in the last equality. Replacing S(v) in the expression of
S0, and using (uv, h) = 2v2(h)−1(uv′, h), where v′ = v/(v, 2∞), we find that

S0 = (1−Q)
∑′

v|e−
fw/2

∑
u|d′

µ(u)(uv, h)

uv
= (1−Q)

∑
v|e−

fw/2

2∤v

∑
u|d′

µ(u)(uv, h)

uv
.
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We obtain 2δ−w = QSd,h1,h(e
−
fw/2) + (1−Q)Sd′,1,h(e−fw/2). Since h1 | (h, d∞), we see using

the product form of Sd,h1,h(e
−
fw/2) of Lemma 4.5 that Sd,h1,h(e

−
fw/2) = Sd,1,h(e

−
fw/2). Hence,

we can factor the products in the following way:

2δ−w =

(
Q

(
1− 2v2(dh)

2v2(q
fw/2+1)+1

)
[h1 | e−f/2] + 1−Q

)
Sd′,1,h(e

−
fw/2).

A quick computation shows that the first factor is equal to 1 − 2v2(dh)Q/2v2(qfw/2+1)+1

whether h1 divides e−f/2 or not. Finally, we use v2(qfw/2 + 1) = v2(q
f/2 + 1) by Lemma

3.11, since 2 ∤ w.

Lemma 4.18. Let f0 = ordd(h,d′∞)(q) and assume [P(f)] = 0. We have

f̄ = f0 ·


(h, 2∞)

(e+f , h, 2
∞)

, if 2 | d;

1, if 2 ∤ d.

Proof. By Lemma 3.12, we have

f̄ =
f0d(h, d

∞)

(qf0 − 1, d(h, d∞))
.

We work on the denominator. If d is odd, then d(h, d∞) divides qf0 − 1 and the result
follows. If 2 | d, then

(qf0 − 1, d(h, d∞)) = d(h, d′∞)

(
qf0 − 1

d(h, d′∞)
, h, 2∞

)
= d(h, d′∞)(e+f0 , h, 2

∞).

Since v2(f) = v2(f0) by Lemma 3.12, we can replace e+f0 by e+f .

Theorem 4.19. If q ≡ 1 (mod 4), 2 | d and a2 is a square in K, then δ−q (γ, d) = 0.
Otherwise, we have

δ−q (γ, d) =
C ′
0(d, h)

2f̄

∏
l|d′

(
1− lvl(dh)

(l + 1)lvl(qf̄−1)

)
,

where, with the notation of Lemma 4.17, we define

C ′
0(d, h) = C0(d, h) ·


(h, 2∞)

(e+f , h, 2
∞)

, if 2 | d;

1, if 2 ∤ d.

Proof. The first case is given by Theorem 4.2. Otherwise, we let f0 = ordd(h,d′∞)(q). By
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Lemmas 4.17 and 4.5, we have

δ−w =
C0(d, h)

2
·


∑
u|d′

µ(u)(dh, u∞)

u(qfw/2 + 1, u∞)
, if (h, d′∞) | e−fw/2;

0, otherwise,

where we expanded the product in Sd′,e,h(e−fw/2) into a Möbius sum. On the one hand, we
see that (h, d′∞) | e−fw/2 if and only if fw ≡ f0 (mod 2f0). By Lemma 3.12, the latter is
equivalent to fw = f0ν for some ν | d′∞. On the other hand, we have

(qfw/2 + 1, u∞) = (qf0ν − 1, u∞) = (qf̄ − 1, u∞)(ν, u∞),

where we used 2 ∤ u for the first equality above, and Lemmas 3.11 and 4.18 for the second
equality. Therefore, we obtain

δ−w =
C0(d, h)

2

∑
u|d′

µ(u)(dh, u∞)

u(qf̄ − 1, u∞)(ν, u∞)
=:

C0(d, h)δ(ν)

2
,

if fw = f0ν for some ν | d′∞. By (3.9), we now have

δ−q (γ, d) =
2φ(d)

[2, d]f

∑
w|d′∞

δ−w
w

=
C0(d, h)φ(d)

f0[2, d]

∑
ν|d′∞

δ(ν)

ν
.

Expanding δ(ν), the series becomes D(d′), defined in Lemma 4.6. This yields

δ−q (γ, d) =
C0(d, h)φ(d)

f0[2, d]
· d′

φ(d′)

∏
l|d′

(
1− lvl(dh)

(l + 1)lvl(qf̄−1)

)
.

Finally, we note that d′/φ(d′) = d/(2, d)φ(d) and that d/[2, d](2, d) = 1/2, so that

C0(d, h)φ(d)

f0[2, d]
· d′

φ(d′)
=
C0(d, h)

2f0
.

The result follows by Lemma 4.18, which applies because 2 | f ensures that [P(f)] = 0.

Example 4.20. Let a1 = a2 = T 2+1, q = 3, and d = 4. Then, we have h = 2, f = f̄ = 2,
and Q = 0. By Theorem 4.19, we have

δ−3 (γ, 4) =
C ′
0(4, 2)

4
=

1

4
.
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Computations show that
1

12

12∑
n=1

R−
3 (γ, 4)

3n/n
≈ 0.263888,

which is relatively close to the expected value.

4.3.3 When d = 2

The density δ−q (γ, 2) has already been explicited in Corollary 3.26 when q ≡ 1 (mod 4). In
this section, we focus on the case q ≡ 3 (mod 4), where we have a closed-form formula by
Theorem 3.29. However, the presence of the boolean B(2j , 2i) = [σ2j ,2i exists and 2∥f2j ,2i ]
can make its computation difficult. In this section, we mostly work on the term

v2(e
−
1 )∑

i=0

1∑
j=0

(−1)j(2i+j , h)

2i+j
· B(2j , 2i), (4.3)

that appears in the expression of δ−q (γ, 2). The calculations are similar to those of the
previous section for the case q ≡ 3 (mod 4). We may skip a few details.

Theorem 4.21. Assume q ≡ 3 (mod 4). We have δ−q (γ, 2) = δ0+δ1, where δ0 was defined
in Theorem 3.29,

δ1 =
1

4
·

0, if h1 ∤ 2e−1 ;

1− Qh1
2v2(q+1)

, otherwise,

and Q = [σL(γ
1/h1) = γ−1/h1 ].

Proof. Our initial goal is to simplify B(2j , 2i) as much as can be. Applying Lemma 3.12
to f2j ,2i = ord2i+1(q), we find that f2j ,2i = 2 for all 1 ≤ i ≤ v2(e−1 ). Hence

B(2j , 2i) = [σ2j ,2i exists],

for i ≥ 1, or (i, j) = (0, 1). By Proposition 4.10, we obtain B(2j , 2i) = Q(2i+j). Note that
we recover the case B(1, 1) = 1, since Q(1) = 1. We may rewrite (4.3) as

δ :=
∑
v|e−1

∑
u|2

µ(u)(uv, h)Q(uv)
uv

.

If h1 ∤ 2v, then Q(uv) = 1 for all u | 2, and the inner sum in δ is equal to 0. Therefore,
the outer sum in the above expression of δ can be taken over v | e−1 such that h1 | 2v. In
particular, we see that δ = S2,1,h(e

−
1 ) = 0 if h1 ∤ 2e−1 , by Lemma 4.5. We assume h1 | 2e−1
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and separate δ into two sums

S1 =
∑
v|e−1
h1|v

∑
u|2

µ(u)(uv, h)Q(uv)
uv

and S2 = Q(h1/2)−Q(h1).

Note that S1 can be zero if h1 ∤ e−1 . Moreover, S2 corresponds to the general term of δ
when v = h1/2. We see that S2 = 1 − Q by the definition of Q(n), and that Q(uv) = Q
for all values of u and v in S1. Hence

δ = S2,h1,h(e
−
1 ) + 1−Q.

We apply Lemma 4.5 and see that the formulas for h1 | e−1 and h1 ∤ e−1 coincide.

Example 4.22. Let a1 = T 2 + 1, a2 = T + 1 and q = 3. We have h = 1, thus Q = 1. By
Theorem 4.21, we have

δ−3 (γ, 2) = δ0 +
1

4
·
(
1− 1

4

)
=

1

8
+

3

16
=

5

16
= 0.3125.

We found δ0 = 1/8 from Theorem 3.29 because L2,2 = L(γ1/2) is a geometric extension of
degree 4 of K. Numerically, we obtain

1

10

10∑
n=1

R−
3 (γ, 2)

3n/n
≈ 0.323133.

The approximated value is relatively close to 5/16.

Note that the approximation error can be large, as we see in the above example or in
Example 4.20. This is due to the exponential growth of the number of prime polynomials
over Fq, which restricts computations to the first few degrees n.

4.4 The case b(h) = 1

We assume L/K is geometric of degree two and b(h) = 1. For consistency with the other
sections, and because Theorem 4.1 allows us to switch γ to −γ, we assume γ = λh/2γ̃h0 .
Before computing formulas for the densities, we note the following:

Lemma 4.23. If b(h) = 1, then 2 | h and q ≡ 1 (mod 4).

Proof. We prove the lemma by its contraposition. Clearly, 2 ∤ h implies that λh/(2,h) = λh.
If 2 | q, then every element of Fq is a power of 2, thus λh/2 ∈ (F×

q )
h. If q ≡ 3 (mod 4),

then for every x ∈ Fq, exactly one of x and −x is a square in Fq. If λ is not a square in
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Fq, then −λ must be a square. It follows that −λh/2 is a power of h if 2∥h, and λh/2 is a
power of h if 4 | h.

Therefore, throughout this section, we assume 2 | h and q ≡ 1 (mod 4). Moreover,
when dealing with results related to R−

q (γ, d), we assume a2 is not a square in K if 2 | d.
The latter is again due to Theorem 4.2. We write

1

N

N∑
n=1

Rq(γ, d, n)

qn/n
=

1

N

N∑
n=1
2|n

Rq(γ, d, n)

qn/n
+

1

N

N∑
n=1
2∤n

Rq(γ, d, n)

qn/n
, (4.4)

and call Seven(N) and Sodd(N) the sums on the right-hand side that run over even and odd
integers respectively. Let Fq2 denote the extension of Fq obtained by adjoining a square
root of λ. We consider the set Rq2(γ, d) of primes P ∈ Fq2K whose rank ρU (P ) is divisible
by d. Note that this makes sense as U ⊂ A. Using Lemma 4.4, we see that

Seven(N) =
1

N

⌊N/2⌋∑
n=1

(
Rq2(γ, d, n)−Rq(γ, d, n) · [2 | n]

q2n/n

)
.

Moreover, we have 0 ≤ Rq(γ, d, n) ≤ qn/n. Hence Rq(γ, d, n) = O(qn/n), so that

Seven(N) =
1

N

⌊N/2⌋∑
n=1

Rq2(γ, d, n)

q2n/n
+O

(
1

N

)
.

It follows that Seven(N) converges to δq2(γ, d)/2 as N tends to infinity. Moreover, we see
that γ is an h-th power in K ′ := Fq2(T ), so that b(h) = 0. This means the closed-form
formulas of Section 4.3 can be used to compute δq2(γ, d). We obtain the following:

Theorem 4.24. If b(h) = 1, then the d3-density of Rq(γ, d) is equal to

δq(γ, d) =
δq2(γ, d)

2
+ lim

N→+∞
Sodd(N).

Proof. Note that the limit of Sodd(N) exists, since the d3-density of Rq(γ, d) and Rq2(γ, d)

exist by the results of Chapter 3.

It remains to consider the limit of Sodd(N). We split Sodd(N) into two sums S+
odd(N)

and S−
odd(N) respectively, using Rq(γ, d, n) = R+

q (γ, d, n)+R
−
q (γ, d, n). Note that Theorem

4.24 holds for R+
q (γ, d) and R−

q (γ, d) as well. In order to compute the two limits, we need
a few preliminary results on the degree fu,v and on the existence of σu,v. By Lemma 3.6,
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we have Fdv,uv = Fq(ζdv, µ
1/(uv,h)) and it follows that

fu,v = orddv(q) ·

2, if h1 | uv and 2 ∤ orddv(q);

1, otherwise,
(4.5)

since b(h) = 1 and µ = λh/2. We use 4.5 to simplify the expressions of δ+w and δ−w given in
(3.4) and (3.8) respectively.

Moreover, we need to check the existence of σu,v to simplify (3.8) further. Necessary
and sufficient conditions are given in the following lemma:

Lemma 4.25. Assume that q ≡ 1 (mod 4) and v2(orddv(q)) = 1. Then, σu,v exists if and
only if (dv, q − 1) ≤ 2 and

(1) 2 ∤ (uv, h), or

(2) 2 | uv, v2(h) = 1, and ã2/∆ ∈ (K×)2;

Proof. Let α = (uv, h, 2∞). We use the same method as in the proof of Lemma 4.16 for
the case α = 1. The only other case is α = 2. We have 2 | h if and only if ã2 ∈ (L×)2.
This is because γ̃ = ã2/ã2 is a square in L, which is not necessarily the case for γ since
b(h) = 1. If γ is a square, i.e., if 4 | h, then a2 is a square in L and we may use the method
of Lemma 4.16. Thus, assume that γ is not a square, i.e., v2(h) = 1. Only one of ã2 and
ã2/∆ is a square in K, say x2. Let u = sgn(a2). If ã2 = x2, then

σ0(γ
1/2) = σ0

(
a

x
√
u

)
=

b

xσ0(
√
u)
,

where
√
u is in Fq2 \ Fq. Hence σ0(γ1/2) = γ−1/2 if and only if σ0(

√
u) =

√
u. That is,

we need Fq2 to be a subfield of Fq(ζdv + ζ−1
dv ), the unique subfield M of Fdv,uv = Fq(ζdv)

such that σ0(y) = y for all y ∈M , where the equality for Fdv,uv holds because 2 | orddv(q).
However, by assumption, we have

2 ∤ [Fq(ζdv + ζ−1
dv ) : Fq] =

orddv(q)

2
,

so that σu,v does not exists. Finally, when ã2/∆ = x2, similar computations show that we
have σ0(γ1/2) = γ−1/2 if and only if σ0(

√
u) = −

√
u. By the same reasoning as before,

this is equivalent to v2(orddv(q)) = 1.

We should note the presence of the assumption v2(orddv(q)) = 1. Recall that there are
only two cases to study for R−

q (γ, d), namely d = 2, or 2 | f and (d, q − 1) ≤ 2. They
appear only if there exists k ≥ 1 such that d | qk + 1. Otherwise, sets are empty and the
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densities zero. We will see that there is no need to consider the case 4 | orddv(q) in our
calculations when 2 | f .

4.4.1 The limit of S+
odd(N)

This is the easiest case and the most straightforward. By Theorem 3.15, we have

S+
odd(N) =

1

N

N∑
n=1
2∤n

R+
q (γ, d, n)

qn/n
=

1

N

N∑
n=1

′
δ+q (γ, d, n) +Od

(
1

N

+∞∑
n=1

τ(e+n )q
−n/2

)

for all N ≥ 1, where
∑ ′ means that the sum is over all odd n divisible by f . Moreover,

since τ(e−n ) ≪ n, the error term is Oq(1/N) because the series converges. Thus, we see
that S+

odd(N) = 0 if 2 | f . Hence, we assume f is odd. Let

S =
⊔

w|d∞

d⊔
α=1

(α,d)=1

Aw,α,

which is a subset of (3.3), where Aw,α = {fw(α+ dn) : n ≥ 0}. Then, we see that the set
of indices taken by

∑ ′ is exactly the set

S ∩ (2N+ 1) =
⊔

w|d′∞

[2,d]⊔
α=1

(α,[2,d])=1

A′
w,α,

where A′
w,α = {fw(α+ [2, d]n) : n ≥ 0}. Using the method of the proof of Theorem 3.18,

we show that
lim

N→+∞
S+
odd(N) =

φ(d)

[2, d]f

∑
w|d′∞

δ+w
w
. (4.6)

We find the following lemma:

Lemma 4.26. Assume v2(f) = 0. Then, we have δ+w = Sd′,1,h(e
+
fw)/2.

Proof. We first take a look at the expression of δ+w in (3.4), and at B(u, v) = [fu,v | fw] in
particular. Since fw is odd, by (4.5), we have

fu,v | fw ⇐⇒ fu,v = orddv(q) and 2 ∤ orddv(q).

Note that we have used orddv(q) | fw if and only if v | e+fw. We see that fu,v = orddv(q) if
and only if h1 ∤ uv by (4.5) again. By Lemma 3.12, and since q ≡ 1 (mod 4), we have

orddv(q) =
fdv

(qf − 1, dv)
.
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In addition, we have v | e+fw and v2(e+fw) = v2(e
+
1 ) since fw is odd. It follows that orddv(q)

is odd because v2(dv) ≤ v2(qf − 1). Hence

B(u, v) = [h1 ∤ uv].

This is a better form of B(u, v). Indeed, we already see that B(u, v) is always 1 if d is odd.
In that case, our lemma follows directly.

Assume 2 | d. Since B(u, v) = 0 if h1 | v, we are only concerned with indices v | e+fw
such that h1 ∤ v in the first sum in (3.4). Let v be such an integer and put k = v2(h)−v2(v).
Then, the general term in v in (3.4) is

∑
u|d

µ(u)(uv, h)

uv
· [2k ∤ u].

Let us call S(v) the sum in the above and assume that k ≥ 2. Then, we have [2k ∤ u] = 1

for all u | d because of the Möbius function in S(v). By proofs similar to the proof of
Lemma 4.5, we write S(v) as the product

S(v) =
(v, h)

v

∏
l|d

(
1− (lv, h)

l(v, h)

)
.

The product is zero because of the factor l = 2. Indeed, we have h1 ∤ v and (2v, h) = 2(v, h).
Thus, we only need to study the case k = 1, that is, v2(2v) = v2(h). We obtain

δ+w =
∑

v|(e+fw,d′∞)

∑
u|d′

µ(u)(2v2(h)−1uv, h)

2v2(h)uv
=
Sd′,1,h(e

+
fw)

2
,

the result we sought.

Theorem 4.27. Assume v2(f) = 0. Then, we have

lim
N→+∞

S+
odd(N) =

C1(d, h)

4f̄

∏
l|d′

(
1− lvl(dh)

(l + 1)lvl(qf̄−1)

)
,

where C1(d, h) = 1 if 2 ∤ d, and C1(d, h) = (h, 2∞)/(e+f , h, 2
∞) otherwise.

Proof. The proof is similar to the proofs of Theorems 4.12 and 4.19, so we may skip a few
details. By Lemmas 4.5 and 4.26, we have δ+w = 0 if f0 ∤ fw. Otherwise, let ν | d′∞ be
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such that fw = f0ν. Then, by expanding Sd′,1,h(e+fw) into a Möbius sum, we obtain

δ+w =
∑
u|d′

µ(u)(dh, u∞)

2u(qf0 − 1, u∞)(ν, u∞)
=:

δ(ν)

2
,

where we used Lemma 3.11 to expand (qfw − 1, u∞). Now, because 2 ∤ u and by Lemma
3.11, we have (qf0 − 1, u∞) = (qf̄ − 1, u∞). The limit of S+

odd(N) is now equal to

φ(d)

[2, d]f

∑
w|d′∞

δ+w
w

=
φ(d)

2[2, d]f0

∑
w|d′∞

δ(ν)

ν
=

φ(d)

2[2, d]f0
·D(d′),

where D(d′) is given in Lemma 4.6. Since q ≡ 1 (mod 4), we have [P(f)] = 0. Thus,
the result follows by applying Lemma 4.18, expanding D(d′), and using the simplifications
used at the end of the proof of Theorem 4.19.

We summarise our results for S+
odd(N) in the following theorem:

Theorem 4.28. Assume b(h) = 1. Then, we have

δ+q (γ, d) =
δ+
q2
(γ, d)

2
+ [2 ∤ f ] · C1(d, h)

4f̄

∏
l|d′

(
1− lvl(dh)

(l + 1)lvl(qf̄−1)

)
,

where C1(d, h) is defined in Theorem 4.27.

Proof. We use Theorems 4.24 and 4.27.

Example 4.29. Let a1 = T , a2 = 3(T 3 + T 2 + 1)2, and q = 5. Then, we have h = 2, and
b(h) = 1, where the latter holds because

γ = 2

(
a

T 3 + T 2 + 1

)2

,

and neither of 2 and −2 is a square in F5. We apply Theorem 4.28 with d = 2 and obtain

δ+5 (γ, 2) =
δ+25(γ, 2)

2
+

1

4
=

5

24
+

1

4
=

11

24
= 0.4583̄,

where we used Theorem 4.12 on δ+25(γ, 2). Our computations show that

1

6

6∑
n=1

R+
5 (γ, 2)

5n/n
≈ 0.455626,

which matches the expected value. In addition, since q ≡ 1 (mod 4), we find that R−
5 (γ, 2)
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has d3-density equal to 1/4 from Corollary 3.26. We have

1

6

6∑
n=1

R−
5 (γ, 2)

5n/n
≈ 0.233333,

which also matches the expected value.

4.4.2 The limit of S−
odd(N)

Recall our assumptions: d | qk +1 for some k ≥ 1, q ≡ 1 (mod 4), and a2 ̸∈ (K×)2 if 2 | d.
As usual, we deal with the cases 2 | f and (d, q − 1) ≤ 2, and d = 2 separately.

If d = 2, then Corollary 3.26 already provides a formula for the density. Therefore,
throughout this subsection, we assume 2 | f and (d, q − 1) ≤ 2. By Theorem 3.23,

S−
odd(N) =

1

N

N∑
n=1
2∤n

R−
q (γ, d, n)

qn/n
=

1

N

N∑
n=1

′
δ−q (γ, d, n) +Od,q

(
1

N

)

for all N ≥ 1, where
∑ ′ means that the sum is over odd integers n congruent to f/2

modulo f . We see that
∑ ′ is empty if 4 | f . We obtain the following:

Theorem 4.30. Assume (d, q − 1) ≤ 2 and 4 | f . Then, we have

δ−q (γ, d) =
δ−
q2
(γ, d)

2
.

Moreover, Theorem 4.12 provides a closed-form formula for δ+
q2
(γ, d).

Proof. Theorem 4.12 can be applied because b(h) = 0 in K ′ = Fq2(T ).

Assume that v2(f) = 1. Then, we see that ordd(q
2) = 1. Hence, we have δ−

q2
(γ, d) = 0

and we are left with
lim

N→+∞
Sodd(N) = δ−q (γ, d).

Therefore, we only need to compute a closed-form formula of δ−q (γ, d) in the case v2(f) = 1.
For the next result, we define

R = [v2(h) = 1 and ã2/∆ ∈ (K×)2].

This boolean function turns out to be useful in applying Lemma 4.25.
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Lemma 4.31. Assume v2(f) = 1 and let w | d′∞. Then, we have

δ−w =
Sd′,1,h(e

−
fw/2)

2
·

1, if 2 ∤ d or R = 0;

0, otherwise.

Proof. The proof is similar to the proof of Lemma 4.17. Recall that

δ−w =
∑

v|e−
fw/2

∑
u|d

µ(u)(uv, h)

2uv
· B(u, v),

where B(u, v) = [σu,v exists] · [fw ≡ fu,v (mod 2fu,v)]. By (4.5), we have fu,v = orddv(q)

for all u | d and v | d∞. We saw at the beginning of Subsection 4.3.2 that

fw ≡ orddv(q) (mod 2orddv(q))

if and only if v | e−fw/2. Hence B(u, v) = [σu,v exists]. Note that B(u, v) = 1 if 2 ∤ d and
the result follows. Thus, we assume that d is even.

Since q ≡ 1 (mod 4), we see that dv | qfw/2 + 1 implies that 2 ∤ v and v2(d) = 1.
By Lemma 4.25, we have B(u, v) = [2 ∤ u, or 2 | u and R = 1]. By the properties of the
Iverson symbol on conjunctions and disjunctions, we find that

B(u, v) = [2 ∤ u] + [2 | u] · R.

If R = 1, then B(u, v) = 1 and 2δ−w = Sd,1,h(e
−
fw/2) = 0 because e−fw/2 is odd. If R = 0,

then the calculations in the proof of Lemma 4.17 show that δ−w = Sd′,1,h(e
−
fw/2)/2.

Theorem 4.32. Assume v2(f) = 1. We have

δ−q (γ, d) =
C2(d, h)

2f̄

∏
l|d′

(
1− lvl(dh)

(l + 1)lvl(qf̄−1)

)
,

where C2(d, h) = 0 if 2 | d and R = 1, and otherwise,

C2(d, h) =


(h, 2∞)

(e+f , h, 2
∞)

, if 2 | d;

1, otherwise.

Proof. As in the proofs of Theorems 4.12, 4.19, and 4.27, we show that

δ−q (γ, d) =
C2(d, h)

2f0

∏
l|d′

(
1− lvl(dh)

(l + 1)lvl(qf̄−1)

)
,
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where f0 = ordd(h,d′∞)(q). Lastly, we write f0 in terms of f̄ . This is done in Lemma 4.18,
which can be applied because 2 | f implies that [P(f)] = 0.

We summarise our results in the following theorem:

Theorem 4.33. Assume b(h) = 1. If 2 | d and a2 is a square in K, then δ−q (γ, d) = 0.
Otherwise, we have

δ−q (γ, d) =
δ−
q2
(γ, d)

2
+ [2∥f ] · C

′
2(d, h)

2f̄

∏
l|d′

(
1− lvl(dh)

(l + 1)lvl(qf̄−1)

)
,

where C ′
2(d, h) was defined in Theorem 4.32.

Proof. We use Theorems 4.24 and 4.32.

Example 4.34. Let a1 = T , a2 = 3(T 3 + T 2 + 1)2, q = 5, and d = 14. We have h = 2,
b(h) = 1, and f = 6. By Lemma 3.20, we have δ−25(γ, 14) = 0. Hence

δ−5 (γ, 14) =
C2(14, 2)

12
·
(
1− 1

8

)
=

7

96
= 0.072916̄.

by Theorem 4.33. In comparison, we computed

1

6

6∑
n=1

R−
5 (γ, 14)

5n/n
≈ 0.070833,

which matches the value of 7/96.

More experimentations with U(T, 3(T 3+T 2+1)2) can be found in Table A.5. See also
Table A.6 for another example in the b(h) = 1 case.

4.5 The case L = Fq2(T )

We assume L = Fq2(T ) and, when dealing with results concerning R−
q (γ, d), a2 is not a

square in K if 2 | d and q ≡ 1 (mod 4). The latter assumption is due to Theorem 4.2.
Throughout this subsection, we only consider elements γ ∈ L that are monic, i.e., both
numerator and denominator are monic. This will simplify most of our calculations, starting
with the fact that γ = γ̃h0 is automatically an h-th power. The choice for this assumption
is justified by the next theorem, which shows that γ is monic in most cases. We prove the
following lemma first, which is an analogue of Theorem 3.3 for Artin-Schreier extensions:
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Lemma 4.35. Assume p = 2. Then, K(a)/K is a proper constant field extension if and
only if there exist Q ∈ K and c ∈ Fq such that X2 +X + c is irreducible over Fq and

a = a1(Q+ α),

where α is a root of X2 +X + c.

Proof. One way is trivial. Hence, we assume that K(a)/K is a proper constant field
extension. In even characteristic, any degree-two extension of Fq is generated by the roots
of an irreducible polynomial

X2 +X + c,

for some c ∈ Fq. Call α one of its root, so that K(a) = K(α). Then, there exist u, v ∈ K
such that α = u + av. Let σ ∈ Gal(Fq2/Fq) be the non-trivial automorphism, that is, it
sends α onto α+ 1, the other root of X2 +X + c. We have

σ(α) = u+ σ(a)v = α+ 1 = (u+ 1) + av.

Moreover, since σ is non-trivial, it should send a to b = a+ a1. We find that

(u+ a1v) + av = (u+ 1) + av,

and, because (1, a) is a K-basis of K(a), we obtain a1v = 1. Hence a = a1(u + α) and it
suffices to put Q = u to find the result.

Theorem 4.36. If p = 2, then sgn(γ) = 1. If p ≥ 3, we have

(1) sgn(γ) = −1, if 2 deg(a1) < deg(a2);

(2) sgn(γ) = 1, if 2 deg(a1) = deg(a2) and sgn(a1)
2 = 4 · sgn(a2).

Note that 2 deg(a1) > deg(a2) can not happen because L ̸= K.

Proof. If p = 2, then a = a1(Q+ α), with the notation of Lemma 4.35. Since, by assump-
tion, γ is not in Fq2 and

γ =
Q+ α

Q+ α+ 1
,

we see that Q ̸∈ Fq and sgn(γ) = 1. Assume that p ≥ 3. By Theorem 3.3, we write ∆ = uδ2

for some δ ∈ A monic and u ∈ Fq not a square. First, we can not have 2 deg(a1) > deg(a2)

because ∆ = a21 − 4a2, so it would mean that u is the leading coefficient of a21, which is a
square. When 2 deg(a1) < deg(a2), we have deg(δ) = deg(a2)/2 and

sgn(a) = sgn

(
a1 + δ

√
u

2

)
=

√
u

2
,
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because deg(a1) < deg(δ). Similarly, we obtain sgn(b) = −
√
u/2 and sgn(γ) = −1. Finally,

if 2 deg(a1) = deg(a2) and sgn(a1)
2 = 4 · sgn(a2), then deg(δ) < deg(a1) and

sgn(a) = sgn

(
a1 + δ

√
u

2

)
=

sgn(a1)

2
= sgn(b).

The result follows.

Under the assumptions made in Theorem 4.36 and with Theorem 4.1, which allows to
switch between γ and −γ, it makes sense to assume γ monic. However, the theorem does
not hold in the case 2 deg(a1) = deg(a2) and sgn(a1)

2 ̸= 4 · sgn(a2). Indeed, if q = 3,

a1 = T + 1 and a2 = 2T 2 + 2T + 1,

then ∆ = 2T 2, and one can show that sgn(γ) =
√
2 ∈ F9. Therefore, although we deal

with most cases here, there are unsolved remaining cases. The first consequences of this
assumption are given in the following lemma:

Lemma 4.37. Assume γ monic. Then, condition (4) of Theorem 4.8 is always satisfied,
and we have [Fn,d : Fq] = 2 · ordn(q2) for all d | n.

Proof. Since γ is monic and because σL(γ) = γ−1, we have

σ0(γ
1/(d,h)) = ζk(d,h)γ

−1/(d,h) = γ−1/(d,h).

We know γ remains monic in Fn,d and that γ1/(d,h) = γ̃
h/(d,h)
0 is monic as well. The same is

true for σ0(γ) and σ0(γ1/(d,h)). Thus, the last condition in Theorem 4.8 is satisfied. Next,
we use Theorem 3.7 to compute the degree. We have

indFq2 (ζn)
×(µ) = indFq2 (ζn)

×(1) = q2ordn(q
2) − 1,

which is divisible by (d, h), and the result follows.

This lemma will be very helpful in our calculations, allowing for many simplifications.
As in the previous section, we can show that

δq(γ, d) =
δq2(γ, d)

2
+ lim

N→+∞
Sodd(N), (4.7)

where Sodd(N) was defined in the same way as in Section 4.4. Note that the results of
Chapter 3 imply that the limit exists because both δq(γ, d) and δq2(γ, d) exist. Now, we
know that a prime P ∈ K splits in L if and only if deg(P ) is even by [29, Proposition 8.13].
Therefore, we have Rq(γ, d, n) = R−

q (γ, d, n) for all odd n ≥ 1. We obtain:
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Theorem 4.38. Assume L = Fq2(T ). Then, we have

δ+q (γ, d) =
δ+
q2
(γ, d)

2
.

If γ is monic, then Theorem 4.12 provides a closed-form formula for δ+
q2
(γ, d).

Proof. See the above discussion for the equality. If γ is monic, then [Fdv,uv : Fq2 ] is equal
to orddv(q

2) by Lemma 4.37. Thus, Theorem 4.12 applies

Example 4.39. Let a1 = 1, a2 = T 2 + T + 1, q = 2 and d = 15. We have

f(X) = X2 − a1X + a2 = (X + T )2 + (X + T ) + 1,

thus the roots of f are a = T +α and b = T +α+1, where α ∈ F4 satisfies α2+α+1 = 0.
We see that γ = a/b is monic and L = Fq2(T ) by Lemma 4.35. Thus, we can apply
Theorem 4.38. We find

δ+2 (γ, 15) =
δ+4 (γ, 15)

2
=

1

4

(
1− 1

4

)(
1− 1

6

)
=

5

32
= 0.15625.

Numerically, we found
1

8

8∑
n=1

R+
2 (γ, 15)

2n/n
≈ 0.150000,

which matches the value. In addition, note that 15 ∤ 2k + 1 for all k ≥ 0. Therefore, we
have δ2(γ, 15) = δ+2 (γ, 15) = 5/32.

In the following, we address the case of δ−q (γ, d). We know that it is zero if d ∤ qk + 1

for all k ≥ 1. Otherwise, Lemma 3.20 shows that Sodd(N) = 0 for all N ≥ 1 unless 2 | f
and (d, q − 1) ≤ 2, or d = 2.

When d = 2, by Corollary 3.26, we only need to address the case q ≡ 3 (mod 4).
Moreover, there is no need to consider the identity (4.7). Indeed, in the proof of Theorem
3.29, we actually show that

δ0 = lim
N→+∞

1

N

N∑
n=1
2|n

R−
q (γ, 2, n)

qn/n
,

where δ0 is defined in the theorem, while the sum given by δ−q (γ, 2) − δ0 corresponds to
the limit of Sodd(N). We have the following:
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Theorem 4.40. Assume q ≡ 3 (mod 4) and γ is monic. Then, we have

δ−q (γ, 2) =
1

2
·

1− h1

2v2(q+1)
, if h1 | e−1 ;

0, otherwise.

Proof. First, note that the δ0 constant defined in Theorem 3.29 is zero because L/K is not
geometric, and thus neither is L2,2/K. Next, by Lemma 4.37, we have

f2j ,2i =
2ord2i+1(q)

(ord2i+1(q), 2)
= ord2i+1(q),

for all i ≥ 1. Then, by Lemma 3.12, we obtain f2j ,2i = 2. Also, we see that σ2j ,2i always
exists if i ≥ 1 or (i, j) = (0, 1), since (2i+1, q − 1) = 2 and 2 | ord2i+1(q), and by Lemma
4.37. Hence B(2j , 2i) = 1 for all i ≥ 0 and j ∈ {0, 1}, and

δ−q (γ, 2) =
1

2

v2(e
−
1 )∑

i=0

∑
j∈{0,1}

(−1)j(2i+j , h)

2i+j
=
S2,1,h(e

−
1 )

2
,

by Theorem 3.29. The result follows by Lemma 4.5.

Example 4.41. Let a1 = 2T 2, a2 = T 4+(T +1)2, and q = 3. We see that ∆ = −(T +1)2,
thus L = F9(T ). Moreover, we have h = 1 and sgn(γ) = 1, by Theorem 4.36. Therefore,
we can apply Theorems 4.38 and 4.40. On the one hand, we have

δ+3 (γ, 2) =
1

2

(
1− 1

12

)
=

11

24
= 0.458333̄,

and on the other hand, we have

δ−3 (γ, 2) =
1

2

(
1− 1

4

)
=

3

8
= 0.375,

We computed

1

8

8∑
n=1

R+
3 (γ, 2)

3n/n
≈ 0.472107 and

1

8

8∑
n=1

R−
3 (γ, 2)

3n/n
≈ 0.368990,

which matches the theoretical values.

We are done with the case d = 2. We already see that the assumption that γ is monic
will simplify most calculations. Now, assume that 2 | f and (d, q − 1) ≤ 2. By Theorem
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3.22, as in the previous section, we may write

Sodd(N) =
1

N

N∑
n=1
2∤n

R−
q (γ, d, n)

qn/n
=

1

N

N∑
n=1

′
δ−q (γ, d, n) +Od,q

(
1

N

)
, (4.8)

for all N ≥ 1, where
∑ ′ means that sum is over odd n’s congruent to f/2 modulo f .

Theorem 4.42. Assume (d, q − 1) ≤ 2 and 4 | f . We have δ−q (γ, d) = 0.

Proof. The sum in the right-hand side of (4.8) is empty if 4 | f . Thus, the limit of Sodd(N)

is zero. By (4.7), we are left with

δ−q (γ, d) =
δ−
q2
(γ, d)

2
,

However, in K ′ = Fq2(T ), we have K ′(a) = K ′. This means that L′ = K ′ and there is no
prime P in K ′ with ϵP = −1. Hence R−

q2
(γ, d) is empty.

Next, if v2(f) = 1, then ordd(q
2) = 1. It follows that δ−

q2
(γ, d) = 0 by Lemma 3.20.

Therefore, from (4.7), we obtain

lim
N→+∞

Sodd(N) = δ−q (γ, d).

Thus, there is no more trick we can use and we have to compute a closed-form of δ−q (γ, d)
directly. Fortunately, the assumption v2(f) = 1 simplifies many calculations.

Theorem 4.43. Assume γ is monic, (d, q − 1) ≤ 2, and v2(f) = 1. We have

δ−q (γ, d) =
C3(d, h)

f̄

∏
l|d′

(
1− lvl(dh)

(l + 1)lvl(qf̄−1)

)
,

where

C3(d, h) =


1, if 2 ∤ d;

1− 2v2(dh)

2v2(q+1)+1
, if 2 | d and h1 | e−f/2;

0, otherwise.

Proof. Recall from (3.9) and (3.8) that

δ−q (γ, 2) =
φ(d)

[2, d]f

∑
w|d′∞

δ−w
w

and δ−w =
∑

v|e−
fw/2

∑
u|d

µ(u)(uv, h)

uv
· B(u, v).
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We work on B(u, v) first. We have (dv, q − 1) ≤ 2 if q ̸≡ 1 (mod 4). If q ̸≡ 1 (mod 4),
we see that v2(d) = 1, and v is odd because e−fw/2 is. Hence (dv, q − 1) = 2. Next, using
Theorem 4.8 and Lemma 4.37, we find that σu,v exists and

B(u, v) = [fw ≡ orddv(q) (mod 2orddv(q))].

We saw at the beginning of Subsection 4.3.2 that this congruence is equivalent to the
divisibility condition v | e−fw/2. It follows that B(u, v) = 1 and δ−w = Sd,1,h(e

−
fw/2). By

Lemma 4.5, we have δ−w = 0 if (h, d∞) ∤ e−fw/2 and otherwise, we have

δ−w =
∑
u|d

µ(u)(dh, u∞)

u(qfw/2 + 1, u∞)
.

Note that the general term in δ−w is a multiplicative function in u, so d 7→ δ−w =: δ−w (d) is
also multiplicative. Thus, we obtain

δ−w (d) =

(
1− 2v2(dh)

2v2(q+1)+1

)[2|d]

δ−w (d
′),

where we took into account that v2(e−fw/2) = v2(e
−
f/2) = v2(q + 1) − v2(d) is fixed. The

latter implies that δ−q (γ, 2) = 0 when h1 ∤ e−f/2 and 2 | d. Otherwise, let f̄ = ordd(h,d∞)(q);
it satisfies v2(f̄) = v2(f) = 1, by Lemma 3.12. We have (h, d∞) | e−fw/2 if and only if there
exists ν | d′∞ such that fw = f̄ν. We obtain δ−w = Sd′,1,h(e

−
fw/2) · ϵq(d, h), where

ϵq(d, h) =


1, if 2 ∤ d;

1− 2v2(dh)

2v2(q+1)+1
, if 2 | d and h1 | e−f/2.

Using the change of variables fw = f̄ν, expanding Sd′,1,h(e−fw/2) into a Möbius sum, and

applying Lemma 3.11 to (qf̄ν/2 + 1, u∞), we obtain

δ−q (γ, d) =
2φ(d)ϵq(d, h)

[2, d]f̄

∑
ν|d′∞

∑
u|d′

µ(u)(dh, u∞)

u(qf̄ − 1, u∞)ν(ν, u∞)
.

We apply Lemma 4.6, and the rest of the proof follows as in the proof of Theorem 4.19.

We summarise our results for d ≥ 3 in the following theorem:
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Theorem 4.44. Assume γ is monic, 2 | f , and (d, q − 1) ≤ 2. If v2(f) = 1, then

δ−q (γ, d) =
C3(d, h)

f̄

∏
l|d′

(
1− lvl(dh)

(l + 1)lvl(qf̄−1)

)
,

where C3(d, h) was defined in Theorem 4.43. Otherwise, if 4 | f , then δ−q (γ, d) = 0.

Proof. We use Theorem 4.43 and (4.7).

Example 4.45. Consider the sequence of Example 4.41 with q = 3 and d = 14. We have
h = 1 and f = f̄ = 6. By Theorem 4.44, we have

δ−3 (γ, 14) =
C(14, 1)

6
·
(
1− 1

8

)
=

7

64
= 0.109375.

Numerically, we found the following:

1

12

12∑
n=1

R−
3 (γ, 14)

3n/n
≈ 0.116224,

which is relatively close to our result. For further investigation, the values obtain numeri-
cally for n = 9, 10, and 11, are

0.154965, 0.139468, and 0.126789,

respectively. We see that it seems to slowly converge towards our result. Note that the
degrees n = 9 and n = 12 are important. Indeed, they are multiples of f/2 = 3, and this is
where we find new contributions to the density. See Table A.8 for more experimentations.

4.6 Algorithms and SageMath computations

In this section, we provide algorithms that find many of the constants that were defined in
this chapter. We compute h, b(h), and σL(γ1/h1). By the results of Sections 4.3 and 4.5, the
computation of such constants is difficult only when L/K is a geometric extension of degree
2. This will be our assumption throughout this section. We propose an implementation of
every algorithm presented using SageMath 9.0 [35].

In the first subsection, we prove a simple algorithm to compute the constant h, not
only in L, but in a given constant field extension of L as well. The latter will be useful in
the next subsections. We use the Newton polygons of a certain family of polynomials over
constant field extensions of K.

In the second subsection, we address the case of the boolean function Q. The algorithm
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simply computes successive square roots of γ, or −γ in some cases, down to γ1/h1 . Then,
we find its image by σL easily.

4.6.1 The h and b(h) constants

Throughout this subsection, we let M = FqmL for some m ≥ 1. To construct our first
algorithm, recall that γ is an n-th power, n ≥ 2, if and only if the polynomial Xn − γ has
a linear factor over M . This is equivalent to the polynomial

fn(X) = (Xn − γ)(Xn − σL(γ)) = X2n − uXn + 1

having an irreducible factor of degree two over FqmK, where we put u := (a21 − 2a2)/a2

and σL for the non-trivial automorphism of Gal(M/FqmK). Indeed, we have

Theorem 4.46. Let n ≥ 2. We have γ ∈ (M×)n if and only if fn(X) has an irreducible
factor of degree 2 over Fqm(T ).

Proof. Let γ = xn, where x ∈M . Then Xn − γ = (X − x)g(X) for some g ∈M [X], and

fn(X) = (X − x)(X − σL(x)) · h(X),

for some h ∈ FqmK[X]. The polynomial (X − x)(X − σL(x)) ∈ FqmK[X] is irreducible,
as γ ̸∈ FqmK ensures that x ̸∈ FqmK. For the converse, if fn has an irreducible factor of
degree 2, say g, then it must split over M . Indeed, by contradiction, if g remains irreducible
in M [X], then it divides one of Xn − γ and Xn − γ−1. We assume that

Xn − γ = g(X)h(X),

for some h ∈M [X]. Then Xn−γ−1 = g(X)(σLh)(X), where σLg = g since g ∈ FqmK[X].
Hence g divides both Xn−γ and Xn−γ−1, which are coprime because γ ̸= γ−1. This is a
contradiction. Therefore, there exists x ∈M \ FqmK such that g(x) = 0 and xn = γ.

We seek to determine for which integers n ≥ 2 the polynomial fn(X) can be reducible.
We draw the Newton polygons of fn to show that there are only finitely many integers
n ≥ 2 to check. Those are divisors of v(u) for a fixed valuation v of M .

Theorem 4.47. We have γ ∈ (M×)n only if n | deg(u) if 2 deg(a1) > deg(a2), and
otherwise, there exists a prime P | a2 in A such that vP (u) < 0 and n | vP (u).

Proof. Assume 2 deg(a1) > deg(a2). Then, the Newton polygon of fn(X) with respect to
the valuation v∞ = −deg in M is the following:
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0 n 2n

v∞(u)

X

v∞

If γ is an n-th power, then fn(X) is reducible by Theorem 4.46. On the Newton polygon,
we see that non-constant factors of fn have either n/v∞(u), or −n/v∞(u) as their slope.
Since fn is reducible, we should have non-trivial integer points on the two segments, where,
by non-trivial, we mean different from (0, 0), (n, v∞(u)) and (2n, 0). Such points exist only
if (v∞(u), n) > 1, thus only if n | deg(u).

Assume 2 deg(a1) ≤ deg(a2). If vp(u) ≥ 0 for all primes p | a2 in Fqm [T ], then a2 | a21
and a2 = λa21 for some λ ∈ F×

q because 2 deg(a1) ≤ deg(a2). This is a contradiction to the
non-degeneracy of U . Therefore, there exists a prime p | a2 with vp(u) < 0. We draw the
Newton polygon with respect to the p-valuation to show that n | vp(u). Let P = p ∩ A.
Then, we find that n | vP (u) since u ∈ K and Fqm(T ) is a constant field extension of K,
hence unramified.

Our first algorithm consists in computing a bound D for the powers of γ, whose ex-
istence is ensured by Theorem 4.47. Recall that γ = ±λh/(2,h)γ̃h0 . In particular, we see
that γ is almost a full power of h. More importantly, only a constant is preventing γ from
being an h-th power. Therefore, we may extend the field of constants of L to Fqm for some
m ≥ 1, so that ±λh/(2,h) = xh, where x ∈ Fqm . It follows from Theorem 4.47 that D is a
bound for our constant h.

Algorithm 1 Computation of a bound for h

Input: Non-zero polynomials a1, a2 ∈ A with a21/a2 ̸∈ F×
q and such that X2 − a1X + a2

is irreducible over A.
Output: Integer D ∈ Z such that h | D.
1: u← (a21 − 2a2)/a2
2: D ← 2 deg(a1)− deg(a2)

3: if D ≤ 0 then ▷ Looking for P with vP (u) < 0 in case 2 deg(a1) ≤ deg(a2).
4: for P | a2 do
5: DP ← vP (u)

6: if DP < 0 then
7: D ← −DP

8: break
9: return D

In the next algorithm, we aim to compute both constants h and b(h). To compute h,
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as mentioned above, we add constants to L so that γ is an h-th power in M = FqmL. If
D is odd, then γ is already an h-th power in L, so m = 1 and b(h) = 0. If D is even
and p ̸= 2, we consider the field Fqm = Fq2(ζ2v2(2D)), where m = 2ord2v2(2D)(q2). We first
consider Fq2 to make sure that λh/2 is an h-th power. The 2v2(2D)-th roots of unity ensure
that ±1 is an h-th power. If p = 2, then γ = λh/2γ̃h0 . Since every element of Fq is a square,
we see that λh/2 is an h-th power, m = 1 and b(h) = 0.

We check whether fn(X) has an irreducible factor of degree two in Fqm(T ) for all
divisors n | D. By Theorem 4.46, the largest such n is equal to h. The method works
similarly to compute b(h) when 2 | h. Once we know the value of h, we check whether γ
and −γ are h1-th powers in L. For that, we introduce another polynomial

gn(X) = (Xn + γ)(Xn + σL(γ)) = X2n + uXn + 1.

There is only a change in the sign of u, so that Theorems 4.46 and 4.47 hold for gn. Now,
it suffices to check that fh1 and gh1 have an irreducible factor of degree two. If only one
of them does, then b(h) = 0. Moreover, if it is gh1 that has an irreducible factor of degree
two and not fh1 , then we know γ should be switched to −γ. If none of them have such a
factor, then b(h) = 1.

Algorithm 2 Computation of h and b(h)

Input: Non-zero polynomials a1, a2 ∈ A with a21/a2 ̸∈ F×
q such that X2 − a1X + a2 is

irreducible over A, and the bound D.
Output: The 3-tuple (h,b(h), e), where e = −1 when b(h) = 0 and γ should be switched

to −γ, and e = 1 otherwise.
1: h,m, e← 1

2: if D is even then m← 2ord2v2(2D)(q2)

3: for n | D do ▷ Divisors should be checked in increasing order.
4: if n ̸= D and fD/n(X) has a prime factor of degree 2 in Fqm(T )[X] then
5: h← [h,D/n]

6: if fh1(X) has a prime factor of degree 2 in Fq(T )[X] then
7: return (h, 0, 1)

8: if gh1(X) has a prime factor of degree 2 in Fq(T )[X] then
9: return (h, 0,−1)

10: return (h, 1, 1).

We implemented Algorithms 1 and 2 using SageMath, and display our code below.
First, we define Fq, A, and B := K[X]:
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[1]: q=9

F.<a> = GF(q)

A.<T> = F[]

B.<X> = Frac(A)[]

The program below, h_bound, provides an implementation of Algorithm 1. Given two
polynomials a1, a2 ∈ A, it returns an integer D ∈ Z such that h | D. As an example, we
compute h_bound(T,−1), which corresponds to the sequence of Fibonacci polynomials
of characteristic polynomial X2 − TX − 1.

[2]: def h_bound(a_1,a_2):

D = 2*A(a_1).degree()-A(a_2).degree()

if D<=0:

for p in prime_divisors(a_2):

Dp = valuation(a_1^2-2*a_2,p)-valuation(a_2,p)

if Dp<0:

D = -Dp

break

return D

h_bound(T,-1)

[2]: 2

The next program, h_constants, provides an implementation of Algorithm 2. It takes
two polynomials a1, a2 ∈ A as an input and returns [h,b(h), e], where e = −1 if b(h) = 0

and γ should be switched for −γ, and e = 1 otherwise.
In the first lines of the program, we define our setting. For instance, we define D by

calling the h_bound function, then m is defined in the first if statement. The next lines
define Fqm , Fqm(T )[X], and u. The computation of h is done in the first for loop. The last
part of the program focuses on computing b(h) as presented in Algorithm 2. Depending
on whether the test holds for f or g, we can determine the value of e.

[3]: def h_constants(a_1,a_2):

D = h_bound(a_1,a_2)

[h, m, b, e] = [1]*4
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if D%2==0 and F.characteristic()!=2:

v = valuation(2*D,2)

m = 2*Mod(q^2,2^v).multiplicative_order()

G.<c> = F.extension(m)

R.<t> = G[]

K = Frac(R)

C.<x> = K[]

u = (a_1^2-2*a_2)/a_2

for n in divisors(D):

d = D//n

if h%d==0:

continue

f = x^(2*d)-K(u)*x^d+1

for p, exp in f.factor():

if p.degree()==2:

h = lcm(h,d)

break

if h%2==0 and q%4==1:

w = valuation(h,2)

f = X^(2^(w+1))-u*X^(2^w)+1

g = f+2*u*X^(2^w)

for p, exp in f.factor():

if p.degree()==2:

b = 0

break

if b==1 and F.characteristic()!=2:

for p, exp in g.factor():

if p.degree()==2:

b = 0; e = -1

break
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else: b = 0

return [h,b,e]

%time h_constants(T,-1)

[3]: [2, 0, 1]

In the example computed above, with a1 = T and a2 = −1, we obtain h = 2, b(h) = 0

and e = 1 from h_constants. We check that this is valid. For the sequence of Fibonacci
polynomials, we have γ = −a2, where a is a root of X2 − TX − 1, say

a =
T +
√
T 2 + 4

2
.

Since q = 9, we have γ = (ia)2 for some i ∈ F9 such that i2 = −1. It suffices to prove that
ia is not an n-th power in F̄qL. Following the method of Theorem 4.46, we show that

Fn(X) = (Xn − ia)(Xn − ib) = X2n − iTXn + 1

does not have an irreducible factor of degree 2 when n ≥ 2. This is straightforward if we
see Fn(X) as a polynomial Fn(X,T ) in T . Indeed, we have

Fn(X,T ) = −iXnT + (X2n + 1),

and the only way for Fn(X) to be composite is for its coefficients −iXn and Xn + 1 to
have a common factor. This is not the case, thus ia is at most a power of n = 1. We
obtain h = 2. We easily see that b(h) = 0 and e = 1 because γ is a power of 2.

4.6.2 The Q constant

In this second subsection, we present an algorithm computing Q = [σL(γ
1/h1) = γ−1/h1 ].

Note that the boolean Q is only needed when b(h) = 0. Moreover, we assume the char-
acteristic to be odd, because Q does not appear in the density formulas when p = 2. We
assume h to be even in Algorithm 3. If h is odd, then we know that Q = 1. Note that
because σL(γ1/h1) = ±γ−1/h1 , we use Q = (σL(γ

1/h1) · γ1/h1 + 1)/2 in the algorithm.
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Algorithm 3 Computation of Q
Input: Non-zero polynomials a1, a2 ∈ A with a21/a2 ̸∈ F×

q and such that X2 − a1X + a2
is irreducible over A, the constant h, and e = −1 when γ should be switched to −γ,
or e = 1 otherwise.

Output: The constant Q.
1: r ← eγ

2: for 1 ≤ n ≤ v2(h) do
3: if r is a square in L then
4: r ←

√
r

5: r ←
√
−r

6: return (σL(r) · r + 1)/2

As in Subsection 4.6.1, we implemented Algorithm 3 using SageMath. We use the same
setting and the sequence of Fibonacci polynomials as an example.

[1]: q=9

F.<a> = GF(q)

A.<T> = F[]

B.<X> = Frac(A)[]

The next program is a preliminary to the implementation of Algorithm 3. Indeed,
SageMath does not have a built-in function for square roots in geometric extensions of the
rational function field K. With ∆, x, y ∈ K as inputs, the sq_root function returns a
pair u, v ∈ K such that u+ v

√
∆ is a square root of x+ y

√
∆ in L.

[2]: def sq_root(Delta,x,y):

N = x^2 - y^2*Delta

if not N.is_square():

return False

n = N.sqrt()

u = (x+n)/2

v = (x-n)/2

for z in [u,v]:

if not z.is_square():

continue

a = z.sqrt()
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X = (x-n)/(2*Delta) if z==u else (x+n)/(2*Delta)

if X.is_square():

return [a, X.sqrt()]

return False

sq_root(T^2+4, -(T^2+2)/2, -T/2)

[2]: [(a + 1)*T, a + 1]

In the above example, we computed a square root of γ for the sequence U(T,−1) of
Fibonacci polynomials. We have ∆ = T 2 + 4 and γ = (ia)2, where i2 = −1 and

a =
T +
√
∆

2
= 2T + 2

√
∆.

The letter a in the program is a primitive element of the extension F9/F3. In our case, it
satisfies a2 = a+ 1. One can easily check that 2i = a+ 1.

The final program of the section, Q_boolean, is an implementation of Algorithm 3,
using sq_root to compute square roots. With inputs a1, a2 ∈ A such that b(h) = 0, the
constant h, and e, it returns the values of Q.

[3]: def Q_boolean(a_1,a_2,h,e):

v = valuation(h,2)

Delta = a_1^2-4*a_2

x = e*(a_1^2-2*a_2)/(2*a_2)

y = e*a_1/(2*a_2)

for n in range(1,v+1):

r = sq_root(Delta,x,y)

if r==False:

r = sq_root(Delta,-x,-y)

x = r[0]

y = r[1]

return (x^2-Delta*y^2+1)//2

Q_boolean(T,-1,2,1)
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[3]: 1

In our example, we obtain Q = 1. We can easily check this claim, since we know h = 2

and γ1/2 = ia. We have σL(ia) = ib, so that σL(ia) · ia = i2ab = −a2 = 1. Hence Q = 1.
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Chapter 5

The order problem in Z

In this chapter, we study the order problem for Lucas sequences U(a1, a2) with integer
parameters a1, a2 ∈ Z \ {0}. That is, can the density of prime numbers p whose rank of
appearance ρU (p) is divisible by a fixed integer d ≥ 1 be found explicitly? We assume
that U is non-degenerate, so that it makes sense to consider this problem. As mentioned
in Chapter 3, this question has been study by many authors. There are two main results
that stand out. One is a theorem of Wiertelak [40], that can be use to solve the reducible
characteristic polynomial case. The second is a result of Sanna [30] that deals with the
irreducible case under the assumption that d is odd and not divisible by 3 if L := Q(

√
∆)

has absolute discriminant ∆L = −3, where ∆ = a21 − 4a2.
The method used in Chapter 4 to compute densities, which consists in considering

“good” booleans functions, can be applied to the number fields case. We are able to
complete the work of Sanna for even integers d under the assumption that ∆L ̸∈ {−4,−3}.
The latter ensures that L is not a cyclotomic field, which comes with many problems
regarding our methods. In the function field setting, the natural analogue is the constant
field extension case discussed in Section 4.5. In fact, this is the only incomplete part of
the irreducible characteristic polynomial case considered in this section, and also the only
instance where roots of unity are adjoined to Fq(T ).

Let Rγ(d) be the set of prime numbers whose rank of appearance in U is divisible by
the integer d ≥ 1, where γ = a/b is the quotient of the roots of X2 − a1X + a2, which
we assume irreducible. Without loss of generality, we exclude the finitely many ramified
primes p | 2∆. As seen at the beginning of Chapter 3 in the function field case, although
many Lucas sequences share the same γ, their set Rγ(d) may differ by only finitely many
primes. Therefore, for asymptotic density results, one can consider Rγ(d) for only one of
these sequences. We denote by δγ(d) its natural density.

As in Chapter 4, we want to be able to switch between γ and −γ at certain times.
This will allow us to find density formulas in many more cases. Recall that −γ can be
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associated with the Lucas sequence U(∆,−a2∆) by Remark 2.10. Therefore, it makes
sense to consider the set R−γ(d) and to use δ−γ(d) in the following theorem, which is an
analogue of Theorem 4.1:

Theorem 5.1. For every d ≥ 2, we have

δγ(d) =

δ−γ(2d) + δ−γ(d/2)− δ−γ(d), if 2∥d;

δ−γ(d), otherwise.

Proof. The proof is the same as the proof of Theorem 4.1 in the function field case.

In the first section, we prove various preliminary results on cyclotomic and Kummer
extensions. Most notably, we study the existence of certain automorphisms in the Galois
group of Ln,d = L(ζn, γ

1/d) over Q, and we compute the degree of Ln,d/Q. Another
important result is Lemma 5.8, an analogue of Lemma 4.5, that computes a closed-form
formula for some special series.

In the second section, we briefly explain how the results of Sanna can be restated to
prove the existence of δγ(d), the asymptotic density of Rγ(d).

We prove closed-form formulas for δγ(d) in the third section. Our formulas are written
as linear combinations of the special series studied in Section 5.1.

In a final section, we display our algorithms and their SageMath [35] implementation.
They are used to compute various boolean functions and field discriminants that appear
in the density formulas.

5.1 Preliminary results

We study Kummer extensions Ln,d = L(ζn, γ
1/d) of L, where d, n ≥ 1, d | n, are integers,

ζn is a primitive n-th root of unity, and ∆L ̸∈ {−4,−3}. We start with a result on the
behaviour of d-th powers in cyclotomic extensions of L. This generalises [30, Lemma 4.4]
and is an analogue of [31, Lemma 4.8].

Lemma 5.2. Let γ ∈ L and d | n be positive integers. Then, we have γ ∈ L(ζn)d if and
only if either γ ∈ (L×)d and d is odd, or γ = ±δd/2 for some δ ∈ L ∩ (L(ζn)

×)2 and d is
even.

Proof. One way is trivial. Thus, we assume γ = bd for some b ∈ L(ζn). If a = γn/d = bn,
then L(ζn, a

1/n) = L(ζn) is an abelian extension of L. By [14, Theorem 3.2, Chapter 8],
we have am1 = cn for some c ∈ L, where m = 1, if 2 ∤ n, and m = 2, otherwise. If 2 ∤ n,
then γn = ad = cdn implies that γ = ζnc

d = cd because the only n-th root of unity in L,
which as discriminant ∆L ̸∈ {−4,−3}, is ζn = 1.
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If 2 | n, then a2 = cn. It follows that a = ±cn/2 and γn = ad = (±1)dcdn/2. We are
done if 2 | d, since we have

γn = cdn/2 and γ = ζknc
d/2 = ±cd/2,

for some k ∈ Z. If 2 ∤ d, then γn = ϵcdn/2 for some ϵ ∈ {±1}. We now have two cases.
First, if ϵ = −1, then we must have v2(n) = 1, since −1 is not a square in L. Hence dn/2
is odd and γn = (−c)dn/2. Moreover, −c must be a square because 2 | n. Therefore, there
exists k ∈ Z and x ∈ L such that

γn = (−c)dn/2 = xdn and γ = ζknx
d = ±xd = (±x)d.

Lastly, if ϵ = 1, we put n′ = n/(n, 2∞), so that γ2n
′
= ±cn′d = (±c)n′d by the method of

the above. Put y = ±c. Then, we see that y must be a square in L because γ is raised to
an even power, while n′d is odd. It follows that γ2n

′
= x2n

′d, and thus γ = ±xd = (±x)d

for some x ∈ L.

From now on, we consider γ = a/b the quotient of the roots of X2 − a1X + a2, which
we recall is irreducible.

Definition 5.3. For all u ∈ {±1}, we define h(u) to be the largest integer t ≥ 1 such that
uγ ∈ (L×)t. We call h := max(h(−1), h(1)).

We assume h = h(1) throughout the rest of this section. When h = h(−1), the results
hold for −γ instead. This will be helpful in Section 5.3. Note that h(1) and h(−1) may
differ only by their 2-adic valuation. Also, if one of them is even, then the other must
be odd. This is because −1 is not a square in L. Therefore, a necessary and sufficient
condition for h(1) > h(−1) to hold is that γ ∈ (L×)2. We write γ = γh0 , where γ0 ∈ L,
and let d0 = d/(d, h) and h0 = h/(d, h).

Theorem 5.4. The minimal polynomial of γ1/d over L(ζn) is

(1) Xd0 − γh0
0 , if 2 ∤ d0 or γh0

0 ̸∈ (L(ζn)
×)2; or

(2) Xd0/2 − γh0/2
0 , otherwise.

Proof. Call f(X) the minimal polynomial of γ1/d. In both cases, we have f(γ1/d) = 0, so
that it suffices to show the irreducibility of f .

Assume 2 ∤ d0 or γh0
0 ̸∈ (L(ζn)

×)2. Let l | d0 be an odd prime. By Lemma 5.2, we see
that γh0

0 ∈ (L(ζn)
×)l if and only if γh0

0 ∈ (L×)l. By the maximality of h, we have l | h0,
which contradicts (d0, h0) = 1. We are done if 2 ∤ d0 by Theorem 3.4. Next, assume 2 | d0
and γh0

0 is not a square in L(ζn). By Theorem 3.4 again, it suffices to show that γh0
0 is not
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of the form −4x4 for some x ∈ L(ζn) when 4 | d0. This is equivalent to −γh0
0 /4 = ±y2 for

some y ∈ L, by Lemma 5.2. Hence

γ = ϵ · (2y)2(d,h), ϵ ∈ {±1}.

If ϵ = 1, then 2 | h0 and we have a contradiction to (d0, h0) = 1. If ϵ = −1, then −γ is a
square. However, we saw that this is a sufficient condition to have h(−1) > h(1). This is
not possible since we assumed h = h(1). Hence γh0

0 is not of the form −4x4 and f(X) is
irreducible by Theorem 3.4.

Assume 2 | d0 and γh0
0 = z2, for some z ∈ L(ζn) \ L. If z = xl, where x ∈ L(ζn) and

l | d0 is an odd prime, then γh0
0 ∈ L∩ (L(ζn)

×)l. By Lemma 5.2 and the same reasoning as
the previous case, we show that this contradicts (d0, h0) = 1. Next, note that if 4 | d0 and
z = −4y4 in L(ζn), then z = (2iy)2 because 4 | n. Therefore, showing that z can not be a
square is sufficient to prove the irreducibility of f(X). By contradiction, if z is a square,
then γh0

0 is a 4-th power in L(ζn), which is equivalent to γh0
0 = ±δ2, δ ∈ L, by Lemma 5.2.

We saw that this either contradicts (d0, h0) = 1, or h = h(1).

Lemma 5.5. We have γh0
0 ∈ (L(ζn)

×)2 if and only if γ1/h1 ∈ (L(ζn)
×)2.

Proof. One way is trivial. Thus, assume that γ1/h1 = x2 for some x ∈ L(ζn). Moreover,
we can write it as x2 = (γh0

0 )(d,h
′), where h′ = h/(h, 2∞). Then, there exists u, v ∈ Z such

that 2u+ (d, h′)v = 1 and

x2v = (γh0
0 )1−2u = γh0

0 · (γ
h0u
0 )−2.

It follows that γh0
0 = (xvγh0u

0 )2.

We now have all the tools to prove two results on Kummer extensions. We first find an
explicit formula for the degree of Ln,d/Q. Then, we give necessary and sufficient conditions
for the existence of a σ ∈ Gal(Ln,d/Q) such that σ(

√
∆) = −

√
∆, σ(ζn) = ζ−1

n and
σ(γ1/d) = γ−1/d. As in Chapter 3, this automorphism is used to compute the density of
primes in Rγ(d) that are inert in L.

Theorem 5.6. We have

[Ln,d : Q] =
dφ(n)

(d, h)
·


1
2 , if ∆L | n, 2h1 | d, and γ1/2h1 ∈ L(ζn);

2, if ∆L ∤ n, and 2h1 ∤ d or γ1/2h1 ̸∈ L(ζn);

1, otherwise.

Proof. By [30, Lemma 4.5], we know that [L(ζn) : Q] = φ(n) · 2[∆L∤n]. By Theorem 5.4
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and Lemma 5.5, we see that

[Ln,d : L(ζn)] =
d

(d, h)
·

1
2 , if 2 | d0 and γ1/2h1 ∈ L(ζn);

1, otherwise,

where d0 = d/(d, h). The result is obtained using the multiplicativity of the degree and
that 2 | d0 if and only if 2h1 | d.

Theorem 5.7. Let σ be an automorphism satisfying

σ(
√
∆) = −

√
∆, σ(ζn) = ζ−1

n , and σ(γ1/d) = γ−1/d.

If 2h1 ∤ d or γ1/h1 ̸∈ (L(ζn)
×)2, then σ belongs to Gal(Ln,d/Q) if and only if the two

following conditions are satisfied:

(1) ∆ < 0 or ∆L ∤ n;

(2) h1 ∤ d, or h1 | d and NL/Q(γ
1/h1) = 1.

Otherwise, if 2h1 | d and γ1/h1 ∈ (L(ζn)
×)2, then σ belongs to Gal(Ln,d/Q) if and only if

the two following conditions are satisfied:

(1) ∆ < 0 or ∆L ∤ n;

(2) σ0(γ
1/2h1) = γ−1/2h1,

where σ0 ∈ Gal(L(ζn)/Q) satisfies σ0(
√
∆) = −

√
∆ and σ0(ζn) = ζ−1

n .

Proof. The proof of [30, Lemma 4.2] shows that σ0 exists if and only if ∆ < 0 or ∆L ∤ n.
Since σ|L(ζn) = σ0, it suffices to find necessary and sufficient conditions for σ0 to be
extended into σ. Let µ(X) be the minimal polynomial of γ1/d over L(ζn), which is given
by Theorem 5.4.

First, we assume 2 ∤ d0 or γh0/2
0 ̸∈ L(ζn). Hence µ(X) = Xd0 − γh0

0 by Theorem 5.4.
Since Ln,d

∼= L(ζn)[X]/(µ(X)), we can extend σ0 in exactly d0 ways by sending a root of
µ to any root of σ0µ. Therefore, we need σ0µ to annihilate γ−1/d, or equivalently

(σ0µ)(X) = Xd0 − σ0(γh0
0 ) = Xd0 − γ−h0

0 .

This happens if and only if σ0(γh0
0 ) = γ−h0

0 . If h1 ∤ d, then γh0
0 is a square in L. Moreover,

because σL(γ) = γ−1, we have σL(γ
h0/2
0 ) = ±γ−h0/2

0 . Hence σ0(γh0
0 ) = γ−h0

0 holds by
squaring both sides. Thus, the equality σ0(γ

h0
0 ) = γ−h0

0 may not hold only if h1 | d. In
that case, we have σ0(γh0

0 ) = γ−h0
0 holds if and only if σ0(γ1/h1) = γ−1/h1 does.
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Next, assume 2 | d0 and γ
h0/2
0 ∈ L(ζn), so that µ(X) = Xd0/2 − γh0/2

0 . By the same
method as the previous case, we can extend σ0 if and only if the equality σ0(γ

h0/2
0 ) = γ

−h0/2
0

holds. Clearly, it implies that σ0(γ1/2h1) = γ−1/2h1 . For the converse, taking the (d, h′)-th
root on both sides, where h′ = h/(h, 2∞), we obtain

σ0(γ
1/2h1(d,h′)) = σ0(γ

h0/2
0 ) = ζk(d,h′)γ

−h0/2
0 ,

for some k ∈ Z. Squaring both sides, we obtain σL(γ
h0
0 ) = ζ2k(d,h′)γ

−h0
0 , which holds in L.

Hence ζ2k(d,h′) = 1 and, because 2 ∤ (d, h′), we have ζk(d,h′) = 1 as well. The result follows
using Lemma 5.5 on the condition γh0

0 ∈ (L(ζn)
×)2.

This last lemma is an analogue of Lemma 4.5. It generalises a formula given in the
proof of [30, Lemma 5.4].

Lemma 5.8. Let d, e, h ≥ 1 and ν ≥ 0 be integers with 2 | d. Then, we have

∑
v|d∞
e|v

∑
u|d

µ(u)(uv, h)[2ν | uv]
φ(dv)uv

=
(h, d∞)ϵ(d, e, ν)

d[(h, d∞), e, 2ν ]2
·
∏
p|d

(
p2

p2 − 1

)
, (5.1)

where ϵ(d, e, ν) = 0 if e ∤ d∞, and

ϵ(d, e, ν) = 1− 3(h, 2∞)

(h, 2ν)
· [e | d∞ and 2ν ∤ e]

For the rest of this chapter, we write Sd,e,h(ν) for the double sum in equation (5.1) and
Sd,e,h = Sd,e,h(0) as a shorthand.

Proof. For ν = 0, see the proof of [30, Lemma 5.4]. Assuming ν ≥ 1, we have

Sd,e,h(ν) = Sd,[e,2ν ],h(0) +
∑
v|d∞

′∑
u|d

µ(u)(uv, h)

φ(dv)uv
· [2ν | uv],

where
∑ ′ means that indices have 2-adic valuation equal to ν − 1 and are divisible by e.

The double sum is zero if 2ν | e. Otherwise, note that [2ν | uv] = [2 | u] and that e | v if
and only if e′ = e/(e, 2∞) divides v. Calling S the double sum, we obtain

S =
∑
v|d′∞
e′|v

∑
u|d′

−µ(u)(2νuv, h)
4ν−1φ(dv)uv

=
−(2ν , h)
4ν−1

·
Sd′,e′,h(0)

2v2(d)
,

where we used that φ(dv) = 2v2(d)−1φ(d′v). By the case ν = 0, we obtain S = 0 if e′ ∤ d∞,
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and otherwise, we have

S =
−(2ν , h)
4ν−1

· (h, d′∞)

2v2(d)d′[(h, d′∞), e′]2
·
∏
p|d′

(
p2

p2 − 1

)

=
−3 · (2ν , h)

4νd
· (h, d′∞)

[(h, d′∞), e′]2
·
∏
p|d

(
p2

p2 − 1

)
.

Next, we use the identity [(h, d′∞), e′] = [(h, d∞), e, 2ν ](h, 2ν)/(h, 2∞)2ν , which holds be-
cause 2ν ∤ e implies that [e, 2ν ] = 2νe′. Hence

S =
−3(h, 2∞)(h, d∞)

(h, 2ν)[(h, d∞), e, 2ν ]2
·
∏
p|d

(
p2

p2 − 1

)
,

and the result follows by expanding Sd,[e,2ν ],h(0).

5.2 Existence of the density

In the statement of [30, Theorem 1.1], Sanna assumes d is odd and not divisible by 3 if
L = Q(

√
∆) has discriminant ∆L = −3. However, these restrictions are not used in the

proofs of the existence of the density or of the upper bound. Indeed, [30, Lemma 5.1]
is stated without them, and while they appear in the statement of [30, Lemma 5.3], the
proof does not invoke them. The proof of the main theorem only relies on these lemmas
and [30, Lemmas 5.2 and 5.4]. It is in the latter that the assumption on d is required to
compute a closed-form formula of the density.

Let x > 1, and denote by Rγ(d, x) the number of primes p ∈ Rγ(d) with p ≤ x. By
modifying the proof [30, Lemma 5.2], Sanna’s theorem can be restated in the following
form, with no assumption on L, nor on d, and under our notation:

Theorem 5.9. Let d be an integer. There exists an absolute constant B > 0, such that
for every x > exp(Bd40), we have

Rγ(d;x) = δγ(d)Li(x) +Oγ

(
d

φ(d)
· x(log log x)

ω(d)

(log x)9/8

)
,

where
δγ(d) =

∑
v|d∞

∑
u|d

µ(u)(1 + [σu,v exists])
[Ldv,uv : Q]

,

and σu,v satisfies σu,v(
√
∆) = −

√
∆, σu,v(ζdv) = ζ−1

dv , and σu,v(γ1/uv) = γ−1/uv, if it exists
in Gal(Ldv,uv/Q).
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Proof. As mentioned above, it suffices to follow the proof of [30, Theoreom 1.1]. We deal
with a few technicalities that may change only the proof of [30, Lemma 5.2]. We apply the
Chebotarev density theorem, [30, Theorem 3.5] to

πγ,dv,uv(x) := #

{
p ≤ x : p ∤ 2∆a2, p ≡

(
∆

p

)
(mod n) and d | ιU (p)

}
,

where ιU (p) satisfies ρU (p) · ιU (p) = p− (∆/p). By [30, Lemma 4.2], we have

πγ,dv,uv(x) = πLdv,uv/Q,C(x),

where πLdv,uv/Q,C(x) counts the number of primes p ≤ x unramified in Ldv,uv and whose
Artin symbol is contained in C, a union of conjugacy classes of the Galois group. Therefore,
we can apply [30, Theorem 3.5] with E = Ldv,uv, F = Q, and C = {id} if σu,v does not
exists, or C = {id, σu,v} otherwise. Let nu,v = [Ldv,uv : Q] and ∆u,v be the absolute
discriminant of Ldv,uv. We obtain

πγ,dv,uv(x) =
1 + [σu,v exists]

nu,v
· Li(x) +O

(
2x exp

(
−c1

√
log(x)/nu,v

))
,

for every x ≥ exp(c2max(nu,v(log |∆u,v|)2, |∆u,v|1/nu,v/nu,v)), where c1, c2 > 0 are absolute
constants. To find the same result as in [30, Lemma 5.2], we make sure the bounds

|∆u,v|1/nu,v ≪U n3 and log |∆u,v| ≪U n2 log(n+ 1),

given in [30, Lemma 4.5], hold in the general case. The second is a consequence of first, so
we may only prove that |∆u,v|1/nu,v ≪U n3. The only change we have to make in Sanna’s
proof is in the computation of the norm

NL(ζdv)/Q(∆Ldv,uv/L(ζdv)).

Without knowing the minimal polynomial of γ1/uv over L(ζdv), we use the existence of an
integer s ≥ 1 such that sγ ∈ OL, so that

Ldv,uv = L(ζdv, γ
1/uv) = L(ζdv, (s

uvγ)1/uv).

Then, by [7, Lemma 5], we find that ∆Ldv,uv/L(ζdv) divides

(uv)uv−1NL(ζdv)/Q(s
uvγ) = (uv)uv−1NL/Q(s

uvγ) = (uv)uv−1s2uv,

so that ∆Ldv,uv/L(ζdv) | (sn)
∞. It follows that NL(ζdv)/Q(∆Ldv,uv/L(ζdv)) | (sn)

∞ as well.
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From this, the rest of the proof can proceed as that of Sanna.

5.3 Closed-form formulas

Assume ∆L ̸∈ {−4, 3} and 2 | d. We prove a closed-form formula for the density of Rγ(d),
which is given in Theorem 5.9 by

δγ(d) =
∑
v|d∞

∑
u|d

µ(u)(1 + [σu,v exists])
[Ldv,uv : Q]

,

Similar to Chapters 3 and 4, we separate δγ(d) into δ+γ (d) and δ−γ (d) in accordance to the
sum 1 + [σu,v exists]. We have

δ+γ (d) =
∑
v|d∞

∑
u|d

µ(u)

[Ldv,uv : Q]
and δ−γ (d) =

∑
v|d∞

∑
u|d

µ(u)[σu,v exists]
[Ldv,uv : Q]

.

Note that δ+γ (d) corresponds to the density of R+
γ (d), the set of primes p whose rank is

divisible by d and with Legendre symbol (∆/p) = 1. For δ−γ (d), we have (∆/p) = −1 and
we denote by R−

γ (d) the corresponding set.
Now, let Q = [NL/Q(γ

1/h1) = 1]. We deal with the two cases Q = 0 and Q = 1

separately. In the Q = 0 case, we are able to find a closed-form formula for δγ(d) without
much trouble. However, when Q = 1, calculations are much more dense.

5.3.1 The case Q = 0

Assume that Q = 0. We prove a closed-form formula for δ+γ (d) and δ−γ (d). Note that our
assumption implies that 2 | h and ∆ > 0. Indeed, since Q = 0 and NL/Q(γ) = 1, we must
have h1 ≥ 2. Moreover, if γ1/h1 = u+ v

√
∆ for some u, v ∈ Q×, then Q = 0 implies that

the norm of γ1/h1 is equal to u2 − v2∆ = −1. Hence ∆ > 0. These two facts are used to
find the closed-form of δ−γ (d).

Theorem 5.10. Assume Q = 0 and let e = ∆L/(d,∆L). Then, we have

δ+γ (d) =
1

2d

(
1

(h, d∞)
+ [e | d∞] · (h, d∞)

[(h, d∞), e]2

)∏
p|d

(
p2

p2 − 1

)
.

Proof. Note that Q = 0 implies that NL/Q(γ
1/h1) = −1. Therefore, γ1/h1 is not a square

in L(ζn) because of Lemma [31, Lemma 4.6]. By Theorem 5.6, we obtain

[Ldv,uv : Q] =
φ(dv)uv

(uv, h)
· 2[∆L∤dv]. (5.2)
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Hence, using ∆L | dv if and only if e | v, we have

δ+γ (d) =
∑
v|d∞

∑
u|d

µ(u)(uv, h)

φ(dv)uv
· 1

2[e∤v]
=
Sd,1,h + Sd,e,h

2
,

Note that we used the identity 2−[e∤v] = (1 + [e | v])/2 in the last equality. The result
follows by Lemma 5.8.

Example 5.11. Let a1 = 4, a2 = 2 and d = 2. We have ∆ = ∆L = 8, e = 4 and

γ =
a2

2
=

(
a√
2

)2

=

(
2 + 2

√
2√

2

)2

= (2 +
√
2)2.

It follows that σL(γ1/2) = 2 −
√
2 ̸= γ−1/2. Hence Q = 0 and v2(h) = 1. Since d = 2,

there is no need to know the full value of h. By Theorem 5.10, we obtain

δ+γ (2) =
1

4
·
(
1

2
+

1

8

)
· 4
3
=

5

24
= 0.2083̄.

Numerically, we computed R+
γ (2, 10

6)/π(106) ≈ 0.207482, where π is the prime counting
function, which matches the theoretical value.

Theorem 5.12. Assume Q = 0 and let e = ∆L/(d,∆L). Then, we have

δ−γ (d) =
3

2d

(
1

(h, d∞)
− [e | d∞ and h1 ∤ e] ·

(h, d∞)

[(h, d∞), e]2

)∏
p|d

(
p2

p2 − 1

)
.

Proof. Recall that Q = 0 implies that 2 | h and ∆ > 0. By Theorem 5.7, we see that σu,v
exists if and only if h1 ∤ uv and ∆L ∤ dv. Therefore, using Theorem 5.6, we obtain

δ−γ (d) =
∑
v|d∞

∑
u|d

µ(u)(uv, h)

φ(dv)uv
· [e ∤ v][h1 ∤ uv]

2[e∤v]
.

We linearise δ−γ (d) using that

[e ∤ v][h1 ∤ uv]
2[e∤v]

=
1− [h1 | uv]− [e | v] + [e | v][h1 | uv]

2
.

With the notation of Lemma 5.8, we obtain

δ−γ (d) =
1

2

(
Sd,1,h − Sd,1,h(ν)− Sd,e,h + Sd,e,h(ν)

)
,

where ν = v2(h). By Lemma 5.8, and because ν = v2(h), we see that Sd,1,h(ν) = −2Sd,1,h.
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Similarly, when e | d∞, we have Sd,e,h(ν) =
(
1− 3 · [h1 ∤ e]

)
· Sd,e,h. Hence

δ−γ (d) =
3

2

(
Sd,1,h − [h1 ∤ e] · Sd,e,h

)
,

and the result follows by expanding Sd,1,h and Sd,e,h into products with Lemma 5.8.

Example 5.13. We keep the same sequence as in Example 5.11 with d = 2 again. By
Theorem 5.12, and because h1 = 2 divides e = 4, we have

δ−γ (2) =
3

4
·
(
1

2
− 0

)
· 4
3
=

1

2
.

Numerically, we have R−
γ (2, 10

6)/π(106) ≈ 0.500343. This matches the value of δ−γ (2).

More numerical comparisons can be found in Appendix A.2 for various sequences. In
particular, Table A.9 is dedicated to the sequence U(4, 2) of Examples 5.11 and 5.13.

5.3.2 The case Q = 1

From now on, we assume that Q = 1. This makes calculations more difficult as we have to
check whether γ1/h1 is a square in L(ζn) in some cases. By [31, Lemma 4.6], we know that
γ−1/h1 is a square in L(ζn) if and only if one of

√
c and

√
c/∆L belongs to Q(ζn), where

c = (u− 1)/2 and γ1/h1 = u+ v
√
∆L for some u, v ∈ Q.

For the rest of this chapter, we define K1 = Q(
√
c) and K2 = Q(

√
c/∆L). Let us

denote by ∆1 and ∆2 their respective absolute discriminants. Now, by [31, Lemma 4.1],
we have γ1/h1 ∈ (L(ζn)

×)2 if and only if ∆1 | n or ∆2 | n.
We prove that δ+γ (d) and δ−γ (d) can be written as linear combinations of sums Sd,e,h(ν),

which are defined in Lemma 5.8 and have closed-form.

Theorem 5.14. Assume Q = 1. Let ν = v2(h) + 1 and

e =
|∆L|

(d, |∆L|)
and ei =

|∆i|
(d, |∆i|)

,

for all 1 ≤ i ≤ 2, and put e0 = 1 and e3 = [e1, e2]. Then, we have

δ+γ (d) =
1

2

3∑
i=0

(−1)[i=3]

(
Sd,ei,h(ν

[i>0]) + Sd,[ei,e],h(ν
[i>0])

)
.

Proof. First, let us define two booleans

P1(n, d) = [∆L | n] · [2h1 | d] · [∆1 | n or ∆2 | n],
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and P2(n, d) = [∆L ∤ n] · [2h1 ∤ d or ∆i ∤ n for all 1 ≤ i ≤ 2]. Then, using Theorem 5.6, we
decompose δ+γ (d) in the following way:

δ+γ (d) = Sd,1,h + S1(d)−
S2(d)

2
,

where we have defined

Si(d) =
∑
v|d∞

∑
u|d

µ(u)(uv, h)Pi(dv, uv)
φ(dv)uv

.

We compute S1 and S2 separately. Note that e | v if and only if ∆L | dv, and the same
holds for ∆i and ei. We use

P1(dv, uv) = [e | v] · [2h1 | uv] · ([e1 | v] + [e2 | v]− [e3 | v])

to write S1(d) = Sd,[e,e1],h(ν) + Sd,[e,e2],h(ν)− Sd,[e,e3],h(ν). Similarly, for S2(d), we use the
following decomposition:

P2(dv, uv) = 1− [e | v]− [2h1 | uv][e1 | v or e2 | v] + P1(dv, uv).

Using the latter and the same technique as for the computation of S1(d), we have

S2(d) = Sd,1,h − Sd,e,h −
(
Sd,e1,h(ν) + Sd,e2,h(ν)− Sd,e3,h(ν)

)
+ S1(d),

Finally, going back to the density δ+γ (d), we obtain

δ+γ (d) =
1

2

(
Sd,1,h + Sd,e,h + S1(d) + Sd,e1,h(ν) + Sd,e2,h(ν)− Sd,e3,h(ν)

)
The result follows by expanding S1(d) and rearranging the terms.

Example 5.15. Let a1 = 5, a2 = 1 and d = 4. We have ∆ = ∆L = e = 21 and

γ =

(
5 +
√
21

2

)2

.

Thus, 2 | h. One can show that γ1/2 is not a square in L, so that h1 = 2. Since 2 is the
only prime dividing d, there is no need to find the full value of h. We see that Q = 1.
Next, we have c = (5/2 − 1)/2 = 3/4, so that K1 = Q(

√
c) = Q(

√
3) and K2 = Q(

√
7).

Their discriminants are ∆1 = 12 and ∆2 = 28, and it follows that e1 = 3 and e2 = 7. By
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Theorem 5.14 and Lemma 5.8, we have

δ+γ (4) =
S4,1,h(0)

2
=

1

12
≈ 0.083̄.

For comparison, we find R+
γ (4, 10

6)/π(106) ≈ 0.083467 in Table A.12.

We now turn our attention to δ−γ (d). The automorphism defined in Theorem 5.7 exists
if and only if ∆ < 0 or ∆L ∤ n, and

(1) 2h1 ∤ d or γ1/h1 ̸∈ (L(ζn)
×)2; or

(2) 2h1 | d, γ1/h1 ∈ (L(ζn)
×)2, and σ0(γ1/2h1) = γ−1/2h1 ,

where σ0 ∈ Gal(L(ζn)/L) is such that σ0(
√
∆) = −

√
∆ and σ0(ζn) = ζ−1

n . However, we
can make conditions (1) and (2) more precise, with less dependence on n. Indeed, recall
that γ1/h1 ∈ (L(ζn)

×)2 if and only if there exists 1 ≤ i ≤ 2 such that ∆i | n. It follows
that the smallest cyclotomic fields containing γ1/2h1 are Q(ζ|∆1|) and Q(ζ|∆2|). With that
in mind, we define σi = σ0|Q(ζ[∆i|)

for all 1 ≤ i ≤ 2. Conditions (1) and (2) become

(1) 2h1 ∤ d or ∆i ∤ n for all 1 ≤ i ≤ 2;

(2) or 2h1 | d and ∃i ∈ {1, 2}, ∆i | n and σi(γ1/2h1) = γ−1/2h1 ,

provided ∆ < 0 or ∆L ∤ n, so that the σi’s exist. We define Qi = [σi(γ
1/2h1) = γ−1/2h1 ]

for all 1 ≤ i ≤ 2 when it is the case. Let us also define

P1(n, d) = [2h1 ∤ d or ∀i ∈ {1, 2}, ∆i ∤ n], (5.3)

which corresponds to condition (1), and

P2(n, d) = [2h1 | d] · [∃i ∈ {1, 2}, ∆i | n and Qi = 1], (5.4)

which corresponds to (2). Then, the expression
(
P1(n, d) +P2(n, d)

)
· [∆ < 0 or ∆L ∤ n] is

equal to 1 if and only if σ exists. We now prove the final result of this section.

Theorem 5.16. Assume Q = 1. With the notation of Theorem 5.14, we have

δ−γ (d) =
1

2

3∑
i=0

(−1)[3∤i]+Qi

(
Sd,ei,h(ν

[i>0]) + (−1)[∆>0]Sd,[ei,e],h(ν
[i>0])

)
,

where Q0 = 0 and Q3 = Q1Q2.

Proof. By (5.3) and (5.4), we may write δ−γ (d) = S1(d) + S2(d), where

Si(d) =
∑
v|d∞

∑
u|d

µ(u)Pi(dv, uv)
[Ldv,uv : Q]

· [∆ < 0 or ∆L ∤ dv],
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for all i ∈ {1, 2}. We start with S1(d). Assuming P1(dv, uv) = 1, we have

1

[Ldv,uv : Q]
=

(uv, h)

φ(dv)uv
·
(
1

2

)[∆L∤dv]
=

(uv, h)

2φ(dv)uv
·
(
1 + [e | v]

)
,

by Theorem 5.6 and using that ∆L | dv if and only if e = |∆L|/(d, |∆L|) divides v.
Replacing in S1(d), we obtain a general term of

µ(u)(uv, h)

2φ(dv)uv
·
(
1 + [e | v]

)
· P1(dv, uv) · [∆ < 0 or e ∤ v]

First, note that
(
1 + [e | v]

)
· [∆ < 0 or e ∤ v] = 1 + (−1)[∆>0][e | v]. Next, we use the

inclusion-exclusion principle to write

P1(dv, uv) = 1− [2h1 | uv and ∃i ∈ {1, 2}, ∆i | dv]

=

3∑
i=1

(−1)[3∤i] · [2h1 | uv and ei | v].

Expanding the product
(
1 + (−1)[∆>0][e | v]

)
· P2(dv, uv) in S1(d), we obtain

S1(d) =
1

2

3∑
i=1

(−1)[3∤i]
(
Sd,ei,h(ν

[i>0]) + (−1)[∆>0]Sd,[ei,e],h(ν
[i>0])

)
.

We now turn our attention to S2(d). Assuming P1(dv, uv), we have

1

[Ldv,uv : Q]
=

(uv, h)

φ(dv)uv
·
(
1 + [e | v]

)
,

by Theorem 5.6. Again, we use
(
1 + [e | v]

)
· [∆ < 0 or e ∤ v] = 1 + (−1)[∆>0][e | v] and

P2(dv, uv) =
3∑

i=1

(−1)[3|i]Qi · [2h1 | uv and ei | v],

to obtain

S2(d) =
3∑

i=1

(−1)[3|i]Qi

(
Sd,ei,h(ν

[i>0]) + (−1)[∆>0]Sd,[ei,e],h(ν
[i>0])

)
.

Finally, we add S2(d) to S1(d) and use the identity

(−1)[3∤i]

2
+ (−1)[3|i]Qi =

(−1)[3∤i]+Qi

2
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on indices i ∈ {1, 2, 3}, which coincides with the case i = 0, to find the result.

Example 5.17. With the sequence of Example 5.15 and d = 4. None of e, e1, or e2 divide
d∞, so there is no need to compute Q1 and Q2. By Theorem 5.16 and Lemma 5.8, we have

δ−γ (4) =
S4,1,h(0)

2
=

1

12
= 0.083̄.

Our computations in Table A.12 show that R−
γ (4, 10

6)/π(106) ≈ 0.083326.

In conclusion, we proved four theorems that computes a closed-form formula of the
density of Rγ(d) when d is even and ∆L ̸∈ {−4,−3}. Together with Sanna’s results, the
only cases left to consider are L = Q(i) and 2 | d, and L = Q(ζ3) and (d, 6) > 1.

5.4 Algorithms and SageMath computations

In this section, we provide an algorithm, as well as its implementation in SageMath 9.0 [35],
that computes Q,Q1 and Q2, and the discriminants ∆1 and ∆2, defined in Section 5.3.

In contrast to the previous chapter, we do not provide an algorithm to compute the
constant h. However, we display below a SageMath program, called h_constant, that
computes it. The method used in the program was kindly shared by Sanna in an e-mail
communication with him. Thus, we would like to thank him.

We use that γ = a2/a2 is an S-unit, where S is the set of prime ideals p in OL that
divide a2. That is, γ belongs to the set

O×
L,S = {x ∈ L : vp(x) = 0 for all p ̸∈ S}.

By Dirichlet’s S-unit theorem, [25, Corollary 11.7], we know thatO×
L,S is a finitely generated

abelian group. Let e ∈ {±1}. We write eγ as a product of generators of O×
L,S , so that the

gcd of the exponents is equal to h(e). We easily check which of h(1) and h(−1) is maximal
by checking whether a2 is a square in L. This amounts to checking if one of a2 and a2/∆
is a square in Q.

Given an input of a1, a2 ∈ Z such that L is not cyclotomic, h_constant returns [h, e],
where e = −1 if 2 | h and γ should be switched for −γ, and e = 1 otherwise.

[1]: def h_constant(a_1,a_2):

if (a_1^2-4*a_2).is_square(): return False

s=1

if is_square(-a_2) or is_square(-a_2/(a_1^2-4*a_2)): s=-1



106

x = polygen(QQ)

K.<a> = NumberField(x^2-a_1*x+a_2)

S = K.ideal(a_2).prime_factors()

S_unit_group = UnitGroup(K, S=tuple(S))

g = a^2/(s*a_2)

return [gcd(S_unit_group(g).exponents()),s]

h_constant(1,-1)

[1]: [2, -1]

With the Fibonacci sequence U(1,−1) as an example, we see that h = 2 and e = −1
in our computation. This makes sense, as γ = −ϕ2 is not a square, while −γ is, where ϕ
is the golden ratio.
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Algorithm 4 Computation of Q, Q1, Q2, ∆1 and ∆2

Input: Non-zero integers a1, a2 ∈ Z such that L is not Q, nor a cyclotomic field.
Output: The 3-tuple (Q, L1, L2), where Li = −1 if Q = 0, Li = [Qi,∆i] if Q = 1 and σi

exists, and Li = [−1,∆i] otherwise.
1: h, e← h_constant(a1, a2)

2: r ← (eγ)1/h1 ∈ L
3: if NL/Q(r) = −1 then
4: return (0,−1,−1)

5: Find u, v ∈ Q such that r = u+ v
√
∆L

6: c← (u− 1)/2

7: K1, K2 ← Q(
√
c), Q(

√
c/∆L)

8: ∆1, ∆2 ← DiscQ(K1), DiscQ(K1)

9: for 1 ≤ i ≤ 2 do
10: Li ← [0,∆i]

11: if ∆ > 0 and ∆L ∤ ∆i then ▷ Checks the existence of σi in Gal(L(ζ|∆i|)/Q).
12: Li ← [−1,∆i]

13: else
14: for σ ∈ Gal(L(ζ|∆i|)/Q) do
15: if σ(

√
∆) = −

√
∆ and σ(ζ|∆i|) = ζ−1

|∆i| and σi(γ1/2h1) = γ−1/2h1 then
16: Li ← [1,∆i]

17: return (1, L1, L2)

We are now ready to implement Algorithm 4 in SageMath. First, notice how the
automorphism σi that we look for in the Galois group of L(ζ|∆i|) is an element of order
two. Thus, instead of checking every elements of the Galois group, we only check those with
order 2. To do so, we implemented elements_of_order2 that takes an multiplicative
abelian group G as an input, and returns the set of elements of order 2 in G.

[2]: from itertools import product

def elements_of_order2(G):

Id = G.identity()

V = [(g,g.order()) for g in G.gens()]

subgroups = []

for g, n in V:

if n%2==0:

subgroups.append([Id,g**(n//2)])



108

else:

subgroups.append([Id])

res = []

for vect in product(*subgroups):

h = Id

for coord in vect:

h*=coord

if h!=Id:

res.append(h)

return res

G = AbelianGroup([4,6])

elements_of_order2(G)

[2]: [f1ˆ3, f0ˆ2, f0ˆ2*f1ˆ3]

In our example, we define G the multiplicative abelian group isomorphic to C4 × C6,
where Cn is a multiplicative cyclic group of order n ≥ 1. The elements f0 and f1 are the
generators of G.

[3]: def Q_booleans(a_1,a_2):

Delta = a_1^2-4*a_2

if Delta.is_square(): return False

x = polygen(QQ)

f = x^2-a_1*x+a_2

K.<a> = NumberField(f)

h, s = h_constant(a_1,a_2)

r = a^2/(s*a_2)

v = valuation(h,2)

for n in range(1, v+1):

if r.is_square(): r = r.sqrt()

else: r = (-r).sqrt()
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N = (r.norm()+1)/2

if N==0: return [0, -1, -1]

R = r.list()

c = (R[0]+R[1]*(a_1/2)-1)/2

Delta_L = squarefree_part(a_1^2-4*a_2)

if not Mod(Delta_L,4)==1: Delta_L = 4*Delta_L

roots = f.roots(QQbar, multiplicities=False)

a_in_QQbar = roots[0]

U = [squarefree_part(c), squarefree_part(c/Delta_L)]

res = [N]

for Delta_i in U:

if not Mod(Delta_i,4)==1: Delta_i = 4*Delta_i

if Delta>0 and Delta_i%abs(Delta_L)==0:

res.append([-1, Delta_i])

else:

C = CyclotomicField(abs(Delta_i))

M.<zeta> = K.composite_fields(C, preserve_embedding=True)[0]

K_roots_in_M = f.roots(M, multiplicities=False)

a_in_M = K_roots_in_M[0]

b_in_M = K_roots_in_M[1]

phi = C.polynomial()

C_roots_in_M = phi.roots(M, multiplicities=False)

zeta_in_M = C_roots_in_M[0]

phi_K = K.hom([a_in_M], M)

u = phi_K(r).sqrt()

for tau in elements_of_order2(M.galois_group()):
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if tau(a_in_M)==b_in_M and tau(zeta_in_M)==zeta_in_M^(-1):

res.append([(u*tau(u)+1)/2, Delta_i])

break

return res

Q_booleans(1,-1)

[3]: [0, -1, -1]

We see that Q_booleans returns Q = 0 for the Fibonacci sequence. Indeed, recall
that γ = −ϕ2 and h = 2. If we switch to −γ, we find

σL(
√
−γ) = σL(ϕ) = 1− ϕ,

which is not equal to ϕ−1. This matches the output.
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Appendix

In the first two appendices, we provide numerical evidence of the closed-form formulas
proved in Chapters 4 and 5. We display the SageMath [35] programs used for our compu-
tations, all are written using SageMath 9.0.

In Appendix A.3, we provides reference tables that summarise which of the main the-
orems of Chapter 4 apply in each case. They serve as guides to identify the appropriate
closed-form formula for the density under the given conditions.

A.1 Numerical data in the function field case

In this section, we demonstrate Theorems 4.12 and the many theorems for the closed-
form formula of δ−q (γ, d), through SageMath experimentations. We start by presenting the
SageMath programs used. We first define the setting.

[1]: q=9

F.<a> = GF(q)

A.<T> = F[]

With the Lucas program, we compute the n-th term of the Lucas sequence U(a1, a2),
where a1, a2 ∈ A, using the companion matrix method.

[2]: def Lucas(a_1,a_2,n):

if n<2: return n

M = matrix([[0,1],[-a_2,a_1]])

return (M^n)[0,1]

The next two programs are preliminaries to the main program. The first function,
irreducible_polynomials, returns the Python generator that yields monic and irre-
ducible polynomials of degree n over Fq. The second, num_irred_polynomials, returns
the number of such polynomials.
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[3]: def irreducible_polynomials(n):

T_powers = [T^i for i in range(0,n)]

irreds_1 = [T+i for i in F]

if n==1:

for p in irreds_1: yield p

irreds_2 = [T^2+i for i in A.polynomials(max_degree=1) if (T^2+i).

↪→is_irreducible()]

if n==2:

for p in irreds_2: yield p

for coeffs in cartesian_product([F]*n):

f = T^n

for i in range(n):

f+=coeffs[i]*T_powers[i]

if any(f%g==0 for g in irreds_1+irreds_2):

continue

if f.is_irreducible():

yield f

def num_irred_polynomials(n):

return sum(moebius(d)*q^(n//d) for d in divisors(n))//n

The function lucas_rank_mod takes as an input two non-zero polynomials a1, a2 ∈ A
such that U(a1, a2) is non-degenerate (see Lemma 2.2), a positive integer d, and a prime
polynomial P . The program returns the boolean [d | ρU (P )] and ϵP , where the latter was
defined in Lemma 2.5.

[4]: def lucas_rank_mod(a_1,a_2,d,p):

p_degree = p.degree()

Delta = a_1^2-4*a_2

f = Mod(q,d).multiplicative_order()

if Delta.mod(p)==0: return [False,0]
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if p_degree%f not in [0,f/2]: return [False,0]

R = F['T'].quotient(p, 'x')

x = R.gen()

B.<y> = R[]

epsilon_p = -1

if F.characteristic()!=2:

norm, var = R(1), R(Delta)

for i in range(p_degree):

norm*=var

var = var**q

if F(norm.lift())**((q-1)//2)==1: epsilon_p = 1

elif not B(y^2-a_1*y+a_2).is_irreducible(): epsilon_p = 1

N = q^p_degree - epsilon_p

a_1_mod = R(a_1)

a_2_mod = R(a_2)

rank = 1

for n in divisors(N):

if Lucas(a_1_mod,a_2_mod,n)==0:

rank = n

break

return [rank%d==0,epsilon_p]

lucas_rank_mod(T,-1,2,T+1)

[4]: [True, 1]

Here, using the Fibonacci polynomial U(T,−1) as an example, we find that P = T +1

has rank ρU (P ) divisible by 2 and ϵP = 1. The first 5 terms of the sequences are

0, 1, T, T 2 + 1, T 3 − T.
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We see that P divides U4 = T 3 − T , but none of the preceding terms. Hence ρU (P ) = 4.
Now, since we are in odd characteristic, we have ϵP is equal to the Legendre symbol (∆/P ),
where ∆ = T 2 + 1. We have(

∆

P

)
≡ ∆(NP−1)/2 ≡ (−1)4 ≡ 1 (mod P ),

so that ϵP = 1. Therefore, we see that lucas_rank_mod returns the right values.
Our final program is called d3_densities. Given a1, a2 ∈ A such that U(a1, a2) is

non-degenerate and integers d,N ≥ 1, the function returns the values of

1

N

N∑
n=1

R+
q (γ, d, n)

qn/n
and

1

N

N∑
n=1

R−
q (γ, d, n)

qn/n
,

where γ is the quotient of the root of the characteristic polynomial of the Lucas sequence.
Note that experimentations with d3_densities can be slow and tedious due to the expo-
nential growth of the number of irreducible polynomials of degree n over Fq,

[5]: def d3_densities(a_1,a_2,d,N):

if Mod(d,F.characteristic())==0: return 0

res_plus = 0

res_minus = 0

L = [num_irred_polynomials(n) for n in range(1,N+1)]

f = Mod(q,d).multiplicative_order()

if Mod(f,2)==0 and (q^(f//2)+1)%d==0 and gcd(d,q-1)<3:

f = f//2

for n in range(f,N+1,f):

nb = 0

for l in irreducible_polynomials(n):

u, v = lucas_rank_mod(a_1,a_2,d,l)

if v==1:

res_plus+=u/L[n-1]

else:

res_minus+=u/L[n-1]
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return [res_plus*1./N, res_minus*1./N]

%time d3_densities(T,-1,2,4)

CPU times: user 23 s, sys: 35.5 ms, total: 23 s

Wall time: 23 s

[5]: [0.405478395061728, 0.000000000000000]

In the above example, we find some approximated values of δ+9 (γ, 2) and δ−9 (γ, 2) for
the sequence of Fibonacci polynomials over F9. Since a2 = −1 is a square in F9, we see
that δ−9 (2) = 0 by Theorem 4.2, which matches the computation. Next, in Section 4.6, we
saw that h = 2, γ is a square, and Q = 0. Hence, we apply Theorem 4.12 and find

δ+9 (γ, 2) =
5

12
= 0.416̄.

This matches the computation as well.
In what follows, we use tables to compare the values of δ+q (γ, d) and δ−q (γ, d) with

experimental values obtained via our SageMath computations. The numerical and experi-
mental values respectively appear in the “num.” and “exp.” columns. Since the number of
polynomials of degree n is asymptotically equivalent to qn/n, we restrict ourselves to small
values of q. For each q, we are able to go up to a certain degree N , which is indicated
below the tables.

More information about the sequences tested can be found after their table. For in-
stance, the value of h, b(h), and Q. When it is needed, they are computed using the
programs in Section 4.6.

d δ+q (γ, d) num. exp. δ−q (γ, d) num. exp. δq(γ, d)

2 5/12 0.416666 0.374341 1/4 0.251989 0.251989 2/3

4 1/3 0.333333 0.319328 0 0.000000 0.000000 1/3

6 11/64 0.171875 0.167273 3/32 0.093750 0.098611 17/64

21 77/1152 0.066840 0.063565 77/1152 0.066840 0.066666 77/576

Table A.1: The sequence U(T, T ) with q = 5

The sequence U(T, T ), with q = 5, comes with the constants: h = 1, b(h) = 0, Q = 1,
and there is no need to switch to −γ. Computations are done up to degree N = 6.
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d δ+q (γ, d) num. exp. δ−q (γ, d) num. exp. δq(γ, d)

2 1/6 0.166666 0.141057 1/4 0.250000 0.236111 5/12

4 1/12 0.083333 0.075388 0 0.000000 0.000000 1/12

10 25/288 0.086805 0.082029 0 0.000000 0.000000 25/288

14 7/144 0.048611 0.044042 7/96 0.072916 0.077380 35/288

Table A.2: The sequence U(T + 1, T 4) with q = 3

The sequence U(T +1, T 4), with q = 3, comes with: h = 4, b(h) = 0, Q = 0, and there
is no need to switch to −γ. Computations are done up to degree N = 12.

d δ+q (γ, d) num. exp. δ−q (γ, d) num. exp. δq(γ, d)

3 1/16 0.062500 0.055638 1/16 0.062500 0.078869 1/8

5 5/48 0.104166 0.094444 5/48 0.104166 0.161616 5/24

7 7/48 0.145833 0.150238 0 0.000000 0.000000 7/48

15 5/192 0.026041 0.022636 0 0.000000 0.000000 5/192

Table A.3: The sequence U(T + 1, T 3) with q = 2

The sequence U(T +1, T 3), with q = 2, comes with: h = 3, b(h) = 0, Q = 1, and there
is no need to switch to −γ. Computations are done up to degree N = 12.

d δ+q (γ, d) num. exp. δ−q (γ, d) num. exp. δq(γ, d)

2 11/24 0.458333 0.444530 1/4 0.250000 0.261904 17/24

4 5/24 0.208333 0.191125 1/4 0.250000 0.261904 11/24

6 23/64 0.359375 0.342146 0 0.000000 0.000000 23/64

8 1/6 0.166666 0.136218 1/4 0.250000 0.261904 5/12

Table A.4: The sequence U(T,−1) with q = 7

The sequence U(T,−1), with q = 7, comes with: h = 2, b(h) = 0, Q = 0 and we
should switch to −γ. Computations are done up to degree N = 6.
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d δ+q (γ, d) num. exp. δ−q (γ, d) num. exp. δq(γ, d)

2 11/24 0.458333 0.455626 1/4 0.250000 0.233333 17/24

4 5/12 0.416666 0.411543 0 0.000000 0.000000 5/24

14 77/1152 0.066840 0.052906 7/96 0.072916 0.708333 161/1152

18 5/96 0.052083 0.040310 1/16 0.062500 0.062500 11/96

Table A.5: The sequence U(T, 3(T 3 + T 2 + 1)2) with q = 5

The sequence U(T, 3(T 3 + T 2 + 1)2), with q = 5, comes with: h = 2, b(h) = 1, and
there is no need to switch to −γ. Computations are done up to degree N = 6.

d δ+q (γ, d) num. exp. δ−q (γ, d) num. exp. δq(γ, d)

2 11/24 0.458333 0.415671 1/4 0.250000 0.270645 17/24

13 13/112 0.116071 0.076666 13/112 0.116071 0.177519 13/56

14 77/1152 0.066840 0.054069 0 0.000000 0.000000 77/1152

18 5/96 0.052083 0.042054 0 0.000000 0.000000 5/96

Table A.6: The sequence U(3T 2 − 1, 3T 2 − 1) with q = 5

The sequence U(3T 2− 1, 3T 2− 1), with q = 5, comes with: h = 2, b(h) = 1, and there
is no need to switch to −γ. Computations are done up to degree N = 6.

In Table A.6, some values do not seem to match. There are two main reasons. First,
for d = 13, we have f̄ = 4. From Chapter 3, new contributions to δ+5 (γ, 13) appear only at
degrees divisible by f̄ . At N = 6, we are between two contributions and the approximation
weakens. Testing up to N = 8 gives δ+5 (γ, 13) = 0.432753, which is closer to the expected
value. The second reason is that we can not take N large enough for a good approximation.
This is particularly the case for d = 18, for which we have f̄ = 6, since we can not reach
the next contribution at N = 12. The same happens in Table A.5.

d δ+q (γ, d) num. exp. δ−q (γ, d) num. exp. δq(γ, d)

3 3/8 0.375000 0.361327 3/8 0.375000 0.372023 3/4

5 5/24 0.208333 0.186318 0 0.000000 0.000000 5/24

7 7/48 0.145833 0.144969 0 0.000000 0.000000 7/48

9 1/8 0.125000 0.102017 1/8 0.125000 0.157738 1/4

Table A.7: The sequence U(T, T 6 + T 3 + T 2) with q = 2
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The sequence U(T, T 6 + T 3 + T 2), with q = 2, comes with: h = 1, L = F4(T ), and
there is no need to switch to −γ. Computations are done up to degree N = 12.

d δ+q (γ, d) num. exp. δ−q (γ, d) num. exp. δq(γ, d)

2 11/24 0.458333 0.472107 3/8 0.375000 0.368990 323/384

4 5/12 0.416666 0.441584 1/4 0.250000 0.258012 2/3

10 115/576 0.199652 0.204783 0 0.000000 0.000000 115/576

14 77/576 0.133680 0.098060 7/64 0.109375 0.093750 35/144

Table A.8: The sequence U(2T 2, T 4 + (T + 1)2) with q = 3

The sequence U(2T 2, T 4 + (T + 1)2), with q = 3, comes with: h = 1, L = F9(T ), and
there is no need to switch to −γ. Computations are done up to degree N = 8.

A.2 Numerical data in the classical case

In this section, we provide numerical evidence of Theorems 5.10, 5.12, 5.14, and 5.16. We
start by presenting the SageMath programs used.

Our first program computes the n-th term of the Lucas sequence U(a1, a2) using the
companion matrix method.

[1]: def Lucas(a_1,a_2,n):

if n<2: return n

M = matrix([[0,1],[-a_2,a_1]])

return (M^n)[0,1]

The program lucas_rank_mod takes as an input two non-zero integers a1, a2 ∈ Z
such that U(a1, a2) is non-degenerate (see Lemma 2.2), a positive integer d, and a prime
number p. The program returns the boolean [d | ρU (p)] and the legendre symbol (∆/p),
where ∆ = a21 − 4a2. Note that there is an exception for p = 2, for which we return 0

instead of the legendre symbol. This is important in the main program, as we choose to
ignore the even prime in our experimentations.

[2]: def lucas_rank_mod(a_1,a_2,d,p):

if p==2: return [a_2%2!=0 and (2 + a_1%2)%d==0, 0]

Delta = a_1^2-4*a_2

legendre = legendre_symbol(Delta,p)
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N = p - legendre

if N%d!=0 or a_2%p==0: return [False,0]

a_1_mod = Mod(a_1,p)

a_2_mod = Mod(a_2,p)

rank = 1

for n in divisors(N):

if Lucas(a_1_mod,a_2_mod,n)==0:

rank = n

break

return [rank%d==0, legendre]

lucas_rank_mod(1,-1,2,7)

[2]: [True, -1]

With inputs U(1,−1), d = 2, and p = 7, we obtain [True,−1] from lucas_rank_mod.
In other words, 2 divides ρU (7) = 8, and (∆/7) = (5/7) = −1, which is valid.

[3]: def densities(a_1,a_2,d,x):

res_plus = 0

res_minus = 0

Delta = a_1^2-4*a_2

Nb_of_primes = prime_pi(x)

for p in prime_range(3,x+1):

u, v = lucas_rank_mod(a_1,a_2,d,p)

if v==1:

res_plus+=u

if v==-1:

res_minus+=u
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return [res_plus*1./Nb_of_primes, res_minus*1./Nb_of_primes]

%time densities(1,-1,2,10^6)

CPU times: user 2min 19s, sys: 51.4 ms, total: 2min 19s

Wall time: 2min 19s

[3]: [0.416749471324110, 0.250019108767102]

In the example, we obtain an approximation of δ+γ (2) and δ−γ (2) for the Fibonacci
sequence U(1,−1). We may compute the density values. Note that γ = −ϕ2 and h = 2.
By Theorem 5.1, we have

δ+γ (2) = δ+−γ(4) + δ+−γ(1)− δ+−γ(2).

Since δ+−γ(1) is the density of primes that split completely in Q(
√
5), we have δ+−γ(1) = 1/2.

Next, one can verify that Q = 0, since (−γ)1/2 has norm −1. Thus, by Theorem 5.10,

δ+−γ(4) =
1

12
and δ+−γ(2) =

1

6
.

It follows that δ+γ (2) = 5/12 = 0.416̄. The same method yields δ−γ (2) = 1/4 = 0.25. We see
that the density values match the experimentation. Other comparisons for the Fibonacci
sequence can be found in Table A.10.

In the following tables, we compare the values of δ+γ (d) and δ−γ (d) with experimental
values obtained via our SageMath computations. The numerical and experimental values
respectively appear in the “num.” and “exp.” columns. We test primes up to 106.

More information about the sequences tested can be found below their table. For
instance, the value of h, Q, ∆L, and various other constants that are defined in our main
theorems. They are computed using the programs in Section 5.4.
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d δ+γ (d) num. exp. δ−γ (d) num. exp. δγ(d)

2 5/24 0.208333 0.207482 1/2 0.500000 0.500343 17/24

4 1/6 0.166666 0.166399 1/4 0.250000 0.250363 5/12

6 5/64 0.078125 0.078231 3/16 0.187500 0.187278 17/64

14 35/1152 0.030381 0.030268 7/96 0.072916 0.073084 119/1152

24 1/32 0.031250 0.031287 0 0.000000 0.000000 1/32

42 35/3072 0.011393 0.011325 7/256 0.027343 0.027669 119/3072

Table A.9: The sequence U(4, 2)

The sequence U(4, 2) of Table A.9 comes with: h = 2, ∆L = 8 and Q = 0. There is no
need to switch γ to −γ. We apply Theorems 5.10 and 5.12.

d δ+γ (d) num. exp. δ−γ (d) num. exp. δγ(d)

2 5/12 0.416666 0.416749 1/4 0.250000 0.250019 2/3

4 1/12 0.083333 0.083021 1/4 0.250000 0.250019 1/3

6 5/32 0.156250 0.156462 3/32 0.093750 0.094002 1/4

10 25/144 0.173611 0.174373 0 0.000000 0.000000 25/144

20 5/144 0.034722 0.035083 0 0.000000 0.000000 5/144

30 25/384 0.065104 0.065619 0 0.000000 0.000000 25/384

Table A.10: The sequence U(1,−1)

The Fibonacci sequence U(1,−1) of Table A.10 comes with: h = 2, ∆L = 5 and Q = 0.
Since a2 = −1, we should switch γ to −γ. We apply Theorems 5.10, 5.12, and 5.1.

d δ+γ (d) num. exp. δ−γ (d) num. exp. δγ(d)

2 1/6 0.166666 0.165774 1/2 0.500000 0.500471 2/3

4 1/12 0.083333 0.083021 1/4 0.250000 0.250019 1/3

6 1/48 0.020833 0.020662 3/48 0.062500 0.062332 1/12

10 5/72 0.069444 0.068995 0 0.000000 0.000000 5/72

18 1/144 0.006944 0.006879 3/144 0.020833 0.020892 1/36

30 5/576 0.008680 0.008713 0 0.000000 0.000000 5/576

Table A.11: The sequence U(10, 5)
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The sequence U(10, 5) of Table A.11 comes with: h = 6, ∆L = 5 and Q = 0. There is
no need to switch γ to −γ. We apply Theorems 5.10 and 5.12.

d δ+γ (d) num. exp. δ−γ (d) num. exp. δγ(d)

2 1/6 0.166666 0.166602 1/6 0.166666 0.167227 1/3

4 1/12 0.083333 0.083467 1/12 0.083333 0.083326 1/6

6 1/32 0.031250 0.031414 3/32 0.093750 0.093607 1/8

10 5/144 0.034722 0.035045 5/144 0.034722 0.034446 5/72

14 7/576 0.012152 0.011949 7/576 0.012152 0.012344 7/288

42 7/768 0.009114 0.009095 0 0.000000 0.000000 7/768

Table A.12: The sequence U(5, 1)

The sequence U(5, 1) of Table A.12 comes with the constants: h = 2, ∆L = 21, Q = 1,
Q1 = 0, ∆1 = 12, Q2 = 1, and ∆2 = 28. There is no need to switch γ to −γ. We apply
Theorems 5.14 and 5.16.

d δ+γ (d) num. exp. δ−γ (d) num. exp. δγ(d)

2 1/3 0.333333 0.332632 1/3 0.333333 0.334135 2/3

4 1/6 0.166666 0.166488 1/6 0.166666 0.167392 1/3

6 1/16 0.062500 0.062574 3/16 0.187500 0.187151 1/4

12 1/32 0.031250 0.031746 3/32 0.093750 0.094040 1/8

26 13/252 0.051587 0.051529 0 0.000000 0.000000 13/252

78 13/1344 0.009672 0.009554 0 0.000000 0.000000 13/1344

Table A.13: The sequence U(1,−3)

The sequence U(1,−3) of Table A.13 comes with the constants: h = 1, ∆L = 13, Q = 1,
Q1 = 0, ∆1 = −3, Q2 = 0, and ∆2 = −39. Note that Q2 = 0 since the automorphism σ2

itself does not exist. This is because ∆L | ∆2. There is no need to switch γ to −γ. We
apply Theorems 5.14 and 5.16.



124

d δ+γ (d) num. exp. δ−γ (d) num. exp. δγ(d)

2 1/12 0.083333 0.082881 1/12 0.083333 0.083607 1/6

4 1/24 0.041666 0.041466 1/24 0.041666 0.042077 1/12

6 1/64 0.015625 0.015363 1/64 0.015625 0.015694 1/32

10 5/576 0.008680 0.008611 5/576 0.008680 0.008790 5/288

22 11/1440 0.007638 0.007783 11/1440 0.007638 0.007732 11/720

30 5/768 0.006510 0.006675 5/768 0.006510 0.006573 5/384

Table A.14: The sequence U(7, 16)

The sequence U(7, 16) of Table A.14 comes with the constants: h = 4, ∆L = −15,
Q = 1, Q1 = 1, ∆1 = −24, Q2 = 1, and ∆2 = −40. There is no need to switch γ to −γ.
We apply Theorems 5.14 and 5.16.

A.3 Reference tables of density formulas

In this appendix, we display three tables that helps find the right theorem in order to
compute a closed-form formula of δ+q (γ, d) and δ−q (γ, d). Each table represents, in order,
one of the three assumptions: q ≡ 1 (mod 4), 2 | q, and q ≡ 3 (mod 4). Note that we
do not mention the possible switch between γ and −γ in the tables. If there is a need to
switch, then one should use Theorem 4.1 first, and then our tables.

In each cell, we either reference the theorem to use or, in trivial cases, we write the
density values directly. If the mention n/a appears, then the case in question does not
happen. We consider four columns, the first being for δ+q (γ, d). The next three columns
deal with δ−q (γ, d) in the cases 2 | f and (d, q−1) ≤ 2, d = 2, and otherwise. We use “o/w”
as an abbreviation for “otherwise”.

Throughout this section, we assume that L/K is a degree-two extension. If L = K,
then R−

q (γ, d) is empty and the density of δ+q (γ, d) is obtained via Theorem 4.12. In
addition, we also assume d | qk + 1 for some k ≥ 1 in the three columns that consider the
case of R−

q (γ, d), as it is empty otherwise.
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δ+q (γ, d) d = 2 2 | f and (d, q − 1) ≤ 2 o/w

b(h) = 0 Theorem 4.12 Corollary 3.26 Theorem 4.19 0

b(h) = 1 Theorem 4.28 Corollary 3.26 Theorem 4.33 0

L = Fq2(T ) Theorem 4.38 Corollary 3.26 Theorem 4.44 0

Table A.15: The case q ≡ 1 (mod 4)

δ+q (γ, d) d = 2 2 | f and (d, q − 1) ≤ 2 o/w

b(h) = 0 Theorem 4.12 0 Theorem 4.19 0

b(h) = 1 n/a n/a n/a n/a

L = Fq2(T ) Theorem 4.38 0 Theorem 4.44 0

Table A.16: The case 2 | q

δ+q (γ, d) d = 2 2 | f and (d, q − 1) ≤ 2 o/w

b(h) = 0 Theorem 4.12 Theorem 4.21 Theorem 4.19 0

b(h) = 1 n/a n/a n/a n/a

L = Fq2(T ) Theorem 4.38 Theorem 4.40 Theorem 4.44 0

Table A.17: The case q ≡ 3 (mod 4)
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