Résumé

Dans cette thése, nous étudions les propriétés de divisibilité de 'ordre multiplicatif
modulo des nombres premiers. En particulier, nous nous intéressons & leurs extensions aux
suites de Lucas a valeurs entiéres ou polynomiales sur des corps finis. Cette étude prend
ses origines dans les travaux de Hasse sur la densité de Dirichlet des premiers pour lesquels
un entier fixé satisfait certaines conditions de divisibilité, modulo ces premiers. De plus,
ces résultats sont reliés & la conjecture d’Artin sur les racines primitives et a la distribution
des diviseurs premiers des suites récurrentes.

Pour les suites de Lucas, 'analogue de l'ordre multiplicatif est le rang d’apparition
des premiers. Etudier la divisibilité de ce rang par un entier fixé généralise le probléme
posé par Hasse. Des formules explicites des densités sont connues pour les suites dont le
polyndme caractéristique est réductible, et des travaux récents dus & Sanna traitent le cas
irréductible pour certains entiers.

Dans le contexte des corps de fonctions globaux, nous étendons les résultats de Sanna
aux suites de Lucas polynomiales. Nous présentons des formules explicites de la densité
dans la plupart des cas, ainsi que des programmes SageMath pour calculer les différentes
constantes rentrant en jeu. Cela rend les résultats complétement explicites.

Enfin, pour les suites de Lucas usuelles & valeurs entiéres, nous démontrons des formules
explicites pour la densité asymptotique des premiers dont le rang d’apparition est divisible
par un entier pair, sous certaines hypothéses. Comme dans le cas des corps de fonctions,
nous présentons des programmes SageMath calculant explicitement les constantes utilisées.

Abstract

In this thesis, we study the divisibility properties of the multiplicative order modulo
primes. In particular, we investigate their extensions to polynomial Lucas sequences over
finite fields. This study has its origin in the work of Hasse on the Dirichlet density of
primes for which a fixed integer satisfies some divisibility condition modulo these primes.
Such results are naturally connected with Artin’s conjecture on primitive roots and with
the distribution of prime divisors in linear recurrences.

For Lucas sequences, the counterpart of the multiplicative order is the rank of appear-
ance of prime numbers. Studying the divisibility of this rank by a fixed integer generalises
Hasse’s problem. Explicit formulas for the density are known for sequences with reducible
characteristic polynomials, while recent results by Sanna cover the irreducible case for
certain integers.

In the context of global function fields, we extend Sanna’s results to polynomial Lucas
sequences. We provide closed-form formulas for the density in most cases, along with
SageMath computations for the constants that appear in these formulas. This makes our
results explicit.

Finally, for classical Lucas sequences, we give a closed-form formula for the natural
density of primes whose rank of appearance is divisible by even integers, under suitable
assumptions. As in the function field case, we provide SageMath programs to explicitly
compute our constants.
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List of Symbols

We provide a list of the symbols that appear frequently in this thesis. They are given in the order
with which they appear. The page of first appearance is indicated whenever more information
about the symbol can be found at this page.

We first give some general notation. We use the letters d,n, N to denote integers and [, p
for prime numbers. We let Q and Fy be the field of rational numbers and the finite field of ¢
elements. The letter ¢ stands for a power of the prime p. We use various classical functions such
as exp, log, Li, and |- |, that is, the exponential, the natural logarithm, the logarithmic integral,
and the floor functions respectively. We write w, 7, ¢, 9, and pu for the prime-omega function,
the number of divisors function, Euler’s totient function, Dedekind psi function, and the M&bius
function, respectively. For integers a,b € Z, we write (a,b) and [a, b], respectively, for the ged and

the lem of a and b. Both the Landau notation O and the Vinogradov symbol < are used.

d> supernatural number

Ul(ay,a9) Lucas sequence U with parameters a1, a2 € A, page 9
ord,(a) order of a mod n in (Z/nZ)*

Vp p-adic valuation

(a/p) Legendre symbol of a modulo p

ds ds-density, page 6

A UFD, F,[T] (Chapters 3 and 4) or Z (Chapter 5)

K fraction field of A, F,(T) (Chapters 3 and 4) or Q (Chapter 5)
K algebraic closure of the field K

Cn primitive n-th root of unity in K

ay,as non-zero elements of A

a,b roots of X2 — a1 X +as in K

A discriminant of X2 — a; X + as

L splitting field K (a) of X2 — a1 X + ay

pu(P) rank of appearance of P € A in U(ay, az2), page 11
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index of appearance of P € A in U(aq,a2), page 12

ring of integers of L, integral closure of A in L

quotient a/b of the roots of X? — a; X + as

the norm |A/P| of P

—1if P isinert in L and 1 if P splits completely, page 11

the non-trivial automorphism of L/K

Frobenius element associated with a prime ideal p € Of,
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Chapter 1

Introduction

1.1 Divisibility of the multiplicative order

In 1965 and 1966, Hasse published two papers [10,11] that were to become the first brick to
a much broader problem. He considered a square-free positive integer a, a prime number
[, and asked how many prime numbers p satisfy [ | ord,(a), where ord,(a) is the order of
the reduction of @ modulo p in the multiplicative group (Z/pZ)*. Call N,(l) the set of
such primes. Hasse proved that N,(l) has a Dirichlet density equal to

17 l

a O EoT
depending on whether [ = 2 and |a| = 2, or not respectively. To interpret these results,
recall that the Dirichlet density measures the proportion of primes lying in a given subset.
Thus, approximately 71% of all primes lie in N2(2), and about 66% in N3(2).

In a series of papers [38-42|, Wiertelak studied in great detail the divisibility properties
of ord,(a), where a € Z \ {£1,0}. Most notably, he gave a complete answer to Hasse’s
original problem, replacing [ by a positive integer d. Not only did he find a formula for
the Dirichlet density d,(d) of N4 (d), but he proved an asymptotic formula for the counting
function Ny(d,x) = Nu(d) N [1,z], where x > 1 is a real number. The following is a
restatement of Wiertelak’s theorem [40] given by Moree [21]:

Theorem 1.1. Let d > 1 be an integer and x > 1. We have

w(d)+1
No(d, ) = a(d)Li(2) + Oug (“”“"g log @) ) |

log(x)?
where w is the prime-omega function and Li s the logarithmic integral function.

Moreover, the formulas Wiertelak gives show that d,(d) is always in Q<. More recently,



Pappalardi [27] took a different approach to this problem and obtained another equivalent
formula for the density. It was given in a more compact form by Moree [21], where a is
replaced by a rational g € Q\ {#1,0}, using a similar method. Write g = +¢f, where
go € Q¢ is not a power and h > 1 is an integer, and let d* be a supernatural number,

where the exponents in the prime decomposition of d*° are equal to +o0o0. We have

€ 2

where (h,d*) is the ged of h and d*°, and €1 € Qs is given explicitly by Moree. Other
related questions answered by Wiertelak concern two sets of prime numbers: those for
which d|jord,(a), and those with (ord,(a),n) = d, where n > 1. Note that d|lord,(a)
means v;(d) = vj(ordy(a)) for all primes [ | d, where v; is the l-adic valuation.

The motivations behind Hasse’s and Wiertelak’s results come from the Artin’s conjec-
ture on primitive roots. Stated by Artin in 1927, the conjecture says that if a is an integer
different from —1 and from a square, then there are infinitely many primes p for which a is
a primitive root modulo p. That is, ord,(a) = p—1 for infinitely many primes. By studying
the distribution of primes p for which ord,(a) satisfies certain divisibility conditions, they
gave a first quantitative understanding of how ord,(a) behaves. See [22] for a survey on
Artin’s conjecture.

Another motivation is found in prime divisors of integer sequences. For a linear re-
cursion X = (zp)n>0 C Z, we say that a prime p divides X, denoted by p | X, if there
exists n > 0 such that p | 2,,. When X is a linear recurrence of order exactly 2, Ward [36]
showed that there are infinitely many primes p such that p | X. This was later generalised
by Stephens [32, 33|, who proved, under the generalised Riemann hypothesis (GRH), that
this set has a positive density for a certain kind of recurrent sequences of order 2. His
work was extended by Moree and Stevenhagen [24] to all second-order recursions using a
clever generalisation of Artin’s conjecture on primitive roots. Although these results are
conditional, there are examples of sequences for which the Dirichlet density can be found

unconditionally. This is the case of sequences X defined by
Tp=a" +0b",

for all n > 0, where a,b € Z\ {£1,0}. The set of primes p dividing X is equal, up to
possibly finitely many exceptions, to Ny(2), where g = a/b, whose density is given by (1.1).
They are not the only sequences that can be linked to the work of Hasse and Wiertelak.



For instance, if d is a prime number and X is defined by

dn __ bdn

d—1
_ nkpn(d—1—k) __ @
n= b =) 1.2

for all n > 1, then the associated prime density is d4(d). Here, note that X is a linear
recursion of order d. This example gives us some insight on the case of higher-order
recursions, for which much less is known about their prime divisors. Recent progress
by Jéarviniemi [13] shows that, under the generalised Riemann hypothesis, higher-order

recursions have a positive lower density of prime divisors.

1.2 Generalisation to Lucas sequences

The Fibonacci sequence is probably the best-known example of a second-order recurrence.
It is denoted by F', and is defined by Fy =0, F1 =1 and Fj49 = F,41 + F, for all n > 0.
With it comes the sequence L = (Ly,)n>0 of Lucas numbers, defined by the same recursion
and initial terms Lo = 2 and L; = 1. In 1985, Lagarias [16] proved that the set of primes
p such that p | L has density 2/3. He made use of Hasse’s method [10,11] and the link

with sequences of the form " + 1. This makes sense as
L, = d)n + qgn’

for all n > 0, where ¢ = (1 + v/5)/2 is the golden ratio and ¢ its quadratic conjugate.
Naturally, we can ask what replaces the multiplicative order of @ modulo p in this instance.
We define the rank of appearance, pr(p), of p in F as the least positive integer n such that
p | F,. This is analogous to the multiplicative order. In particular, we have p | L precisely
when 2 | pr(p). It is only natural that the divisibility problem for the multiplicative order
extends to primes whose rank of appearance in F' is divisible by a fixed integer d > 2.
This has been studied by Cubre and Rouse [8], who obtained a complete formula for the

Dirichlet density of such primes, namely

C(j) L1 (pfi 1> ’

pld

where ¢(d) is equal to 1, 5/4, or 1/2 if, respectively, 10 { d, d = 10 (mod 20), or 20 | d.
Given two non-zero integers aj,as € Z, we define the Lucas sequence U = (Uy)n>0

with parameters a; and ao. It satisfies the initial conditions Uy = 0, U; = 1, and

Un+2 = alUn—i—l —agUp,



for all n > 0. As for the Fibonacci sequence F' = U(1,—1), one defines the rank of
appearance of a prime p in U, denoted by py(p), as the least positive integer n such that
p | Uy,. Of course, we may ask whether the Dirichlet density of primes p for which d | pi(p),
where d > 2, exists and can be found explicitly for all Lucas sequences. This turns out to
be a direct generalisation of Hasse’s original problem. Indeed, one has py (p) = ord,(a/b)

for sequences U such that
f(X)=X* -1 X +az = (X —a)(X —b) (1.3)

is reducible over Z. In that case, the density is equal to d4(d), where g = a/b, which was
explicited in (1.1). This generalisation to Lucas sequences allows us to replace a,b € Z
by quadratic conjugates a,b € L := Q(\/K), where A = a} — 4ay, whenever f(X) is
irreducible.

The case d = 2 has been studied in great detail by Moree and Stevenhagen [20,23|. They
gave a complete description of the density values when the root a is a fundamental unit
of the real quadratic field Q(v/A). Recently, Sanna [30] made an important contribution
to this problem. Let Agy be the square-free part of A. Assuming that d is odd and not
divisible by 3 if L # Q((3), where (3 is a primitive third root of unity, he showed that the
Dirichlet density of the primes p for which d | py(p) exists and is equal to

2

5utd) = 3 (G + @) T ()

pld

where ny(d) =0if A >0, or Ag Z 1 (mod 4), or Ay 1d>, and

(h,d*)
[(h7 doo)v AO/(d7 AO)P ’

nu(d) =

otherwise. Prior to Sanna’s result, some progress had already been made in some other
cases. In 2013, Ballot considered Lucas sequences such that L is equal to a cyclotomic
field. That is, when A is minus a square, or minus three times a square. Using clever
decompositions of U into products of other sequences, which are only feasible when L is

cyclotomic, he found the value of 0y (d) for d € {2,4} and d € {3,6}, when L = Q1)
and L = Q((3) respectively, where i> = —1. This was done under some fairly general
hypotheses on the parameter as.

The motivation for studying prime divisors of sequences is natural, as it mimics the case
mentioned in Section 1.1. Indeed, we can replace a and b in (1.2) by quadratic conjugates.
The sequences obtained lie in Z, and the density of their prime divisors is equal to dy(d),

for d a prime number. This can actually be extended to composite integers, where the



density is obtained via the Mobius sum

1- Z M(u)éU(u)a

uld

where p is the Md&bius function. Another question, which provides a second motivation,
is whether there exists a generalisation of Artin’s conjecture to Lucas sequences with an
irreducible characteristic polynomial. In a series of papers, Laxton [18,19] constructed a
group G(f), where elements are equivalence classes of sequences sharing the same charac-
teristic polynomial f, defined as in (1.3). The group operation of G(f) has the property
of preserving prime divisibility. In the first paper, Laxton restated the Artin primitive
root conjecture via quotients of G(f) by certain normal subgroups. This allowed for a
first generalisation to the irreducible case. From an arithmetic point of view, the Artin
conjecture for Lucas sequences asserts that, if a/b is not a square, there are infinitely many

primes p for which py(p) is maximal, that is,

pu(p) =p — <A>,

p

where (A/p) is the Legendre symbol of A modulo p. This links py(p) to another behaviour
of the multiplicative order. Indeed, as ordy(a) divides p — 1, the same is true for py(p),
which divides p — (A/p).

1.3 The function field case

There is a well-known analogy between Z and the ring of polynomials A = F [T with
positive characteristic p. Both are Euclidean rings in which prime numbers and monic
irreducible polynomials are prime elements. In this setting, the analogue of Q is the
fraction field of A, that is, K := F4(T"). In Sections 1.1 and 1.2, we discussed the problem
of the divisibility of the rank of appearance of Lucas sequences. It is natural to ask whether
a similar investigation can be conducted for sequences defined over A.

In 2006 and 2007, Ballot |2, 3| considered the Lucas sequence U = (Up)n>0 C A with
parameters a; = T + 1 and ao = T. That is, the sequence defined by

™ -1

Up =
n T—l,

for all n > 0. As in Section 1.2, we define py(P) as the rank of a prime P in U, that
is, P is a monic and irreducible polynomial in A. In his papers, Ballot computed the
density of the set of primes P whose rank of appearance is divisible by a prime number.

Some remarkable properties of this sequence even allowed him to prove his results using



an elementary method. Note that, in contrast to the classical case, Ballot did not use the
Dirichlet density, but another density notion referred to as the ds-density. Let S C A be a
set of primes and S(NNV) be the number of P € S with polynomial degree N, N > 1. Then,
the ds-density of S is defined by

N
o 1 S(n)
ds(S) = Nl—lg-loo N nz_l qr/n’

when the limit exists. In discussing the different notions of prime density over Fy(T),
Ballot [4] showed evidence that the ds-density is a close analogue to the natural density of
positive integers. Moreover, the existence of a ds-density for a set .S, implies the existence
of its Dirichlet density. In that case, their value is the same. This confirms the ds-density
as a stronger notion of density than the Dirichlet density.

To our knowledge, Ballot’s papers are the only instance in the literature that study the
divisibility problem of the rank of appearance in this context. We believe that this can
be explained by Artin’s conjecture on primitive roots being settled in the function field
setting. Without this motivation, fewer weaker problems have been studied to get closer
to the conjecture’s validity. Let a« € K \ Fy, a not an I-th power for all [ | ¢ — 1. The
conjecture states that there exist infinitely many primes P € A such that a is a primitive
root modulo P, that is, a has order ¢ — 1 in (A/P)*. It was first proven by Bilharz [6]
under the generalised Riemann hypothesis for function fields, which was later proved by
Weil [37]. In his proof, Bilharz shows that the set of primes P that have a as a primitive
root has positive Dirichlet density. Another proof was given in 1994 by Pappalardi and
Shparlinski [28| by estimating the number of primes P € A of degree n > 1 that satisfy
the conjecture. More recently, Kim and Murty [15] managed to prove Artin’s conjecture

without using the generalised Riemann hypothesis for function fields.

1.4 Thesis outline

The main purpose of this thesis is to extend Sanna’s results [30] to polynomial Lucas
sequences over the finite field IF, of ¢ elements. The idea is to adapt his method to the
function field setting and find a closed-form formula for the ds-density of primes P € A =
F,[T] whose rank of appearance is divisible by a fixed integer d > 1. We do not restrict
ourselves to odd integers, and aim for a general characterisation of the density values. This
generalises Ballot’s results |2, 3| to other Lucas sequences. However, unlike him, we are
unable to prove a general result by elementary means. Additionally, one of our objectives is
to make progress on the divisibility problem for classical Lucas sequence in Z. We seek to

find the Dirichlet density of prime numbers p whose rank of appearance is divisible by an



even integer d > 1 when Q(V/A) is not a cyclotomic field, where A was defined in Section
1.2. This would leave only the cyclotomic cases to be studied. Throughout this thesis, we
refer to these types of problems under a common name: the order problem.

In Chapter 2, we define Lucas sequences in rings of integers of global fields. This is
where we make our first essential assumptions on Lucas sequences for the thesis. Moreover,
we give various properties of the rank of appearance.

In the third chapter, we consider various notions of density that were defined and
compared in a discussion by Ballot [4]. For each notion, we study the existence of the
density of the set of primes P € A such that d | py(P), where py(p) is the rank of
appearance of P in a given Lucas sequence U C A and d is a positive integer. We show
that the Dirichlet and d3 densities always exists in Theorems 3.18 and 3.23, and that the
others do not in Theorem 3.31. Doing so, we obtain a first formula for the ds-density. This
chapter includes many preliminaries on field extensions of K = F (7). In particular, we
study constant field extensions and Kummer extensions. For the latter, we find an exact
formula for the field degree of Kummer extensions of rank 1 over K.

Chapter 4 complements Chapter 3, in which we obtained a first formula for the ds-
density. This formula involves an infinite series, which, as such, is not easy to compute. If
U has reducible characteristic polynomial, then Theorem 4.12 provides a nicer formula for
the density. However, we had to make assumptions on the constant field of our Kummer
extensions to prove it. If U has irreducible characteristic polynomial f(X), then we are
able to find a closed-form formula in almost all cases. The only cases left occur when the
splitting field of f(X) is F,2(7"). This is the only case in which we adjoin a root of unity
to K, which parallels the case left aside by Sanna [30] in his theorem. At the end of this
chapter, we provide a few algorithms and their SageMath [35] implementations in order to
compute all the constants defined throughout Chapters 3 and 4. This makes our results
explicit.

In Chapter 5, we come back to classical Lucas sequences U C Z. Recall that A is the
discriminant of the characteristic polynomial of U. Under the assumption that Q(\/Z) is
not a cyclotomic field, we derive a closed-form formula for the Dirichlet density of prime
numbers p whose rank py(p) is divisible by an even integer d > 1. We use the method of
Chapter 4. Our results depend on various constants. Thus, as in the previous chapter, we

provide algorithms to compute these constants, with their SageMath implementations.






Chapter 2
Lucas sequences in integer rings

This first chapter is an introduction to Lucas sequences. We reprove classical properties
about those sequences that are already known over Z. This thesis is about prime densities
for primes in both Z and Fy[T], where [, is the finite field of ¢ elements. Therefore, we
generalise those results to rings of integers of global fields.

Section 2.1 is dedicated to basic definitions of our setting and of Lucas sequences. This
is a short section in which we prove various properties of those sequences via elementary
methods.

In the second section, we study the rank of appearance of primes in a Lucas sequence.
That is, for a fixed prime ideal P, the least integer n > 1 such that P divides the n-th term
of the sequence. We prove classical properties of the rank known as the laws of appearance,
and of repetition.

Throughout this chapter, the letter n denote a non-negative integer and the letter p
zero or a prime number. We let A denote the ring of integers of a global field K with
characteristic p. We write K for an algebraic closure of K and ¢, for a primitive n-th root

of unity in K.

2.1 Definitions and first properties

Let ay,as € A be non-zero. We consider the polynomial f(X) = X? — a; X + ay in A[X]

with roots a,b € K and discriminant A := a? — 4as.

Definition 2.1. A Lucas sequence U = (Uy,)n>1 with parameters aj,as € A is a second
order linear recursion with initial terms Uy = 0 and Uy = 1, and with characteristic
polynomial f(X), that is, such that U,y = a1Ups1 — a2U, for alln > 0.

However, we prefer writing Lucas sequences in their Binet formula. We have two cases.
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If a = b, then U,, = na™ ! for all n > 0, and otherwise, we have

a —b"
Un: )
a—b

for all n > 0. This is the latter form that will be of interest throughout this thesis.
We distinguish two kinds of Lucas sequences: the degenerate and non-degenerate Lucas
sequences. If U, = 0 for some n > 1, then U is called degenerate. Therefore, a Lucas
sequence that is non-zero for all n > 1 is non-degenerate. Let L = K(a) be the splitting
field of f(X). The following lemma shows that degeneracy can be expressed as a relation

between the roots of the characteristic polynomial:

Lemma 2.2. A Lucas sequence U 1is degenerate if and only if we have a = (b for some
root of unity ( € L. (C#1ifp=0.)

Proof. If a = b, then U, = na™ ! # 0 unless p > 0 and p | n. If a # b, then

a —b"

a—>b

— 0 — (%)n=1 —s a=(h,

U,=0 <

for some n-th root of unity ¢ € L. O

We assume that U is a non-degenerate sequence for the rest of this chapter, as there is
much more to say in this case. Moreover, in the following chapters, we study the divisibility

by primes of Lucas sequences, since the degenerate case is straightforward.
Proposition 2.3 (Divisibility sequence). For all m,n > 0, we have Uy, | Upp.
Proof. If a = b, then the result follows directly from U, = na" '. Otherwise, we have

Umn amn — pmn

U,  a"—0b

Let ' = a™ and b’ = b™. We see that the above quotient is the m-th term of the Lucas
sequence U’ with parameters o’ + b" and a’b’. We only need to show that the parameters
are in A. But we have a't’ = (ab)" = a'. Also, a’ +V = a" + b" is the n-th term of the
sequence V = (V},)n>0 defined by Vp = 2, Vi = ay, and

Vo = aoViqo — aoVi,

for all n > 0. We see from the recursion that V,, € A. [l
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2.2 The rank of appearance of primes

Let P € A be a prime ideal. In this section, we study the behaviour of primes in Lucas
sequences. The object of interest is called the rank of appearance, or just the rank as a

shorthand, and is defined in the following:

Definition 2.4. The rank of appearance of P in U, denoted by py(P), is the least positive
integer n > 1 such that P | Uy, if it exists. Otherwise, we write py(P) = +o0.

Let O, denote the ring of integers of L, i.e., the integral closure of A in L. The next
lemma shows how the rank can be seen as the multiplicative order of v := a/b modulo
some prime ideal of L. As a consequence, we find that the condition P { ag is sufficient for
the rank of P to exist. We let NP = |A/P).

Lemma 2.5. Let Pt 2Aas be prime and p | P be a prime ideal of Or. Then, py(P) is
equal to the multiplicative order of vy modulo p, and py(P) | NP — ep, where

1, if P splits in L;
—1, if P is inert in L.

€Ep =

Proof. We prove that P | U, if and only if v = 1 (mod p), where n > 1. Note that
reducing 7 modulo p makes sense as P { ay ensures that p 1 ab. Since p is lying above P,

we have P | U,, only if p divides

a —b" a —b"

a—b VA

This makes sense because Pt A, and thus pt A as well. Hence a" = 0" (mod p), which is

U, =

equivalent to 7" =1 (mod p). For the converse, we saw that 7" =1 (mod p) if and only
if we have p | U,. If L = K, or L # K and P is inert, then the result follows directly.
For the other primes, since L/K has degree two, we know it is Galois. We have p | U, if
and only if or,(p) | Uy, where oy, is the non-trivial automorphism of L/K. It follows that
P | U, because PO, = pNor(p). Finally, the result follows by minimality of the rank of
appearance of P and of the order modulo p.

Now, for the second part of the lemma, we note that if p # 2, then a prime of K is
ramified in L if and only if it divides 2A. (See |7, Lemma 5| for reference.) If p = 2, then
for any prime P € A, the residue field A/P has characteristic p = 2. We have

fX)=X —a1 X +ay=(X+a)® (mod P)

if and only if ay = o (mod P) and a; = 0 (mod P), by identifying the coefficients on
both sides. This is equivalent to @ = b (mod P), that is, P | A = (a — b)*>. By the
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Dedekind-Kummer theorem, it follows that P { 2A ensures that P is unramified in L.
Therefore, the Frobenius element o, := (L/K,p) corresponding to a prime p | P exists.

We have 0, = id if ep = 1, and o, = oy, otherwise. By definition, we have

NP

0w(1) =7"F (mod p) and oyu(y) =

Hence vVP~¢7 = 1 (mod p), that is, P | Uyp_c, by the above. The claim follows by the

minimality of the multiplicative order. O

Corollary 2.6. Let P { Aag be prime and n > 1. Then, P | Uy, if and only if pu(P) | n.

Proof. This is a direct consequence of Lemma 2.5 and the rank being the multiplicative
order of v modulo p | P. O

Definition 2.7. The unique integer vy (P) such that py(P) - wy(P) = NP — €p is called
the index of appearance of P in U.

Lemma 2.8. Let U and U’ be non-degenerate Lucas sequences. Assume that v is the
quotient of the roots of both f(X) and f'(X), their respective characteristic polynomials.
Then, there exists c € K> such that U, = c”_lU;L for alln > 0.

Proof. Let f(X) = X? —a;X +ag and f(X) = X? — A; X + Ay. We denote by a,b € L
the roots of f, and «, 3 € L those of f. We have v = a/b = «/f3, and

2 2
-1_9 5 AL
The latter yields ag/As = (al/Al)Q. The result follows with ¢ = ay/A;. O

We end this chapter with a formula that links ordy(vy) to ord,(—7), where ordy(y) is
the order of the reduction of v modulo p in (O /p)*. In particular, by Lemma 2.5, it
links py(P) to ordy(—7). Although simple, this observation plays an important role in our
work, as we will see at the beginning of Chapters 4 and 5. The same argument was used
by Wiertelak [40].

Lemma 2.9. Assume p # 2. Let p be a prime ideal of Or. We have

ordp(—v)/2, if2tordy(7);
ordp(7y) = ¢ 2ordy(—7), if ordy(y) =2 (mod 4);

ordy(—7), if 4 | ordp (7).

Proof. Let p = ordy(7y). Then, since

(=)= (=1)” (mod p),
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we see that 2p = ordy(—v) if p is odd. If p =2 (mod 4), then (—)?/? =1 (mod p). We
claim that p/2 is the least integer ¢ > 1 such that (—)?’2 =1 (mod p). If it is not, then
there exists m < p/2 such that (—)™ is 1 modulo p, which implies that ™ =1 (mod p),
a contradiction. If 4 | p, then (—y)?/? =~”/2 = —1 (mod p). The result follows. O

Remark 2.10. The order ord,(—7) corresponds to the rank of appearance py(P) for the
Lucas sequence U(A, —azA).
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Chapter 3

Existence of densities for the order

problem

With the notation of Chapter 2, we let ¢ be a power of the prime p. We write K = F,(T")
and A = F,[T]. Let U be a Lucas sequence with non-zero parameters aj,as € A. This
chapter is dedicated to the study of the rank of appearance py(P) of primes P € A,
which are monic and irreducible polynomials over F,. More precisely, we ask what is the
proportion of primes that have their rank divisible by a fixed integer?

This order problem has been studied by many authors in the classical case [1,10, 11,
16,20, 23, 30,40]. However, it was only studied by Ballot [2,3] in the function field setting,

where he considered the Lucas sequence defined by

T -1
o T-1

Un

for all n > 0, and d a prime number. We aim to generalise his results in Chapters 3 and 4
to d a composite integer and U an arbitrary Lucas sequence.

Studying the rank of primes in Lucas sequences is of interest only if there are primes
dividing U,, at some n > 1. Therefore, for U to truly be a polynomial sequence, we assume
that a1 and a9 are not both constants in A. Throughout this chapter, we also assume that
~v = a/bis not a constant in L = K(a). This ensures that U is non-degenerate, that is, U,
is non-zero for all n > 1. Note that v ¢ Fp, := I_Fq N L is equivalent to a%/ag not being a
constant in [F,. This is straightforward using that v + vt =a2/ay - 2.

Let d > 2 be an integer. We study the set R,(v,d) of primes P € A such that py(P)
exists and d | py(P), and where P unramified in L. By Lemma 2.5 and its proof, the
condition P { Aay is sufficient for pyr(P) to exist and for P not to ramify in L. Therefore,
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we define the set precisely as
Ry(v,d) ={P € A prime : P { Aay and d | piy(P)}.

Note that the dependence on 7 comes from Lemma 2.5, which states that py(P) is the
order of v modulo any prime lying above P. However, there are many sequences associated
with the same . To make sense of the definition of R,(7,d), note from Lemma 2.8 that
any two sequences U and U’ associated with the same ~ satisfy U,, = c”flU;L for allm > 0,
for some ¢ € K*. Tt follows that the set of primes with d | py(P) differs only by finitely
many elements from the set of primes with d | py(P). Hence, they have the same density,
equal to the density of R,(v,d).

In addition, note that any v € L with norm equal to 1 can be associated with a Lucas
sequence. If p # 2 and v = (u+v\/K)/d € L, for some u,v,d € A, then - can be associated
with the Lucas sequence U with parameters a; = 2(u + d) and ag = 2d(u + d). The same
is true in even characteristic if we consider L = K (a), where a is a root of an irreducible
polynomial X2 + A X 4+ Ay. If v = (u + av)/d, then it can be associated with the Lucas
sequence U(Ajv,dAjv). In this thesis, we take the point of view of Lucas sequences and
the notation thereof.

Now, note that we are not directly studying R(v,d) itself, but rather two disjoint
subsets Ry (v,d) and R (v,d). The subset R;(’y,d) is made of primes P € Ry(y,d) that
split completely in L, while R (v, d) is made of those that are inert in L.

To find the proportion of primes in R; (v,d) and R, (,d), we use particular notions of
prime density on A. Let S C A be a set of monic irreducible polynomials and S(N) be the
number of P € S with polynomial degree N, where N > 1. The most common densities

are the d; and 0 densities defined, when they exist, by the limits

NpP~—*
and 0(5) = lim ZIDL?.
s—1+ ZPEP+ NP S

. S(N)
dl (S) - N1—1>I—Ii-1<>o 73+(N)

The letter P4 denotes the set of monic irreducible polynomials in A and NP = qies(®) ig

the norm of P. The quantity P (V) is usually denoted Iy and is given by the sum

_ 1 N/d
Iy = N Zﬂ(d)q .
d|N

The number §(S) is called the Dirichlet density of S and is the analogue of the Dirichlet
density used for rational prime numbers. In a discussion about densities on A, Ballot [4]
defines five densities di, d2, d3, d4 and 6, and concludes two things. Denoting by §; = o

the fact that any set of primes in A having a §;-density equal to d must have a Jo-density
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equal to d, [4, Theorem A] states the following:
di < dy = d3 = dy < 0.

Moreover, ds is not equivalent to do, nor dy4. In conclusion, there are three distinct densities

to be considered. In this paper, we consider di, 0 and the ds-density defined by the limit

. 1
dS(S) - N1—1>I-ir-loo N

N
S(n) . 1 S(n)
I, _Nl—lg-looN;q"/n’

E

n=1

when it exists. Note that the second equality follows from the classical asymptotic formula
I, =q¢"/n+ O(q”/ 2/n) as n tends to infinity. Secondly, although there is some evidence
of d; being an analogue of the natural density commonly used on N, Ballot concludes that
d3 seems to be a better candidate. Indeed, various sets of rational prime numbers that are
known to have natural density have analogues in A that do not have di-density but have
ds-density. In this work, we prove that the set R4(7,d) does not usually have di-density,
but always has ds-density, thus confirming d3 as a strong analogue of the natural density.
Our work is based on the method used by Pappalardi [27], Moree [21], and Sanna [30,31],
and on the elementary approach taken by Ballot [2, 3].

From the definition of the ds-density, we see that we will need to estimate qu(% d,N),
the number of primes in R;t('y, d) of degree N. The following analogue of the Chebotarev

density theorem, see [9, Proposition 6.4.8|, is our main tool for this chapter:

Theorem 3.1. Let L/K be an extension of global function fields with Galois group G and
respective constant fields Fgn and Fy. Let C C G be a conjugacy class and k be a positive
integer such that o|p . = Tkhgqn for all 0 € C, where T is a Frobenius element of Fyn /IF,.

For all N > 1, we consider the counting function
Cn(L/K,C) =#{P € Pk : deg(P) = N and (L/K,P) =C},

where P denotes the set of primes of K unramified in L and (L/K, P) denotes the Artin
symbol of P. If N # k (mod n), then Cn(L/K,C) =0. If N =k (mod n), then
N
#Ca' | _ 2#C

Cn(L/K,C) — NI SN ((m+9L)qN/2 +m(2gx + 1)V + g1 +dm> ,

where m = [L : Fgn K] and d = [K : Fy(T)], and gr denotes the genus of a field F.

Our first section is divided into three subsections. In Subsection 3.1.1, we prove neces-
sary and sufficient conditions for L(yl/ ™)/ L to be a constant field extension, where n > 1

and v € L. In the second subsection, we study Kummer extension of function fields. We
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prove an exact formula for the degree of L, 4 = L((y, A 4y where ¢, € F, is a primitive
n-th root of unity and d | n is a positive integer. Moreover, we give a bound of the genus
of L, 4 and conditions for the splitting of certain primes in L, 4. In Subsection 3.1.3, we
give a formula for the multiplicative order modulo integers.

In Section 3.2, we prove the existence of the ds-density of R;r(’y,d). We first study
the number of primes in R;“ (7,d) with fixed degree. We are able to apply Theorem 3.1 to

obtain an asymptotic formula of the form

for some function f, and where 6;'(7, d, N) is expressed in terms of degrees of Kummer
extensions. Then, we prove our main result Theorem 3.18. The proof relies on a technique
used by Ballot [2,3] that consists on partitioning N into adequate disjoint arithmetic
progressions. For all n > 1 in the same arithmetic progression, we find that 5; (v,d,N)
is a constant independent of n, thus simplifying most calculations. The same is done in
Section 3.3 for R, (7, d) to find . (7,d, N). In both cases, we find a series representation
of their density.

In Section 3.4, we prove that the di-density of R4(7,d) only exists in the trivial cases.

By the equivalence mentioned above, this also holds for the ds-density.

3.1 Preliminary results

In the section, we prove preliminary results to the study of R4(y,d). We first give a
necessary and sufficient condition for an extension of the form L(vl/ ™) to be an extension
of the field of constants of L. In the second subsection, we prove exact formulas for the
degrees involving Kummer extensions L,, 4 := L((n,'yl/ 4y, Moreover, we show that the
genus of L, 4 is bounded above by a constant times a certain field degree. Finally, we

evaluate the multiplicative order of ¢ > 2 modulo some useful integers.

3.1.1 On constant field extensions

Recall that L/ K is an algebraic extension of function fields which is either K or a quadratic
extension of K. We fix oo C L a prime ideal of degree 1, i.e., such that [O /o0 : Fr] =1,
where Oy is the valuation ring of oo in L and F, = L NF,. By [26, Theorem 2.2.9], the
completion of L with respect to the valuation ve, is the field Lo, := Fr((7)) of Laurent

series in 7, a uniformizer of Oy. Given x € L, there exist ng € Z and (a;)i>0 C Fr, such

that
r=7"0 g a; ",
i>0
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where x is seen as an element of L.,. We say that x is monic when ag = 1. The monic
part of x, denoted , is defined by Z := ay Ly, The coefficient ag is called the sign of z
and acts as an analogue of the leading coefficient for polynomials. We denote it by sgn(x).
We use this construction throughout the chapter, starting with the Theorem 3.3, which
provides a necessary and sufficient condition for a radical extension of L to be a constant

field extension. We first define the latter, as well as so-called geometric extensions.

Definition 3.2. Let K/IF, be an algebraic function field and L/Fyn be an extension of K,
where n > 1. We say that L/ K is

(1) a constant field extension if L =Fgn K ; or
(2) a geometric extension if F,NL=F,N K.

Note that an extension of function fields does not necessarily have to be constant or geo-

metric.

Theorem 3.3. Let v € L*. Then, the extension L(v'/™)/L is a constant field extension
if and only if v = pb" for some p € Fy and b e L*.

Proof. Let | be a prime. We first prove the result for n = [* by induction on k > 1. The
base case is identical to the proof of [12, Lemma 3.3|, so we may skip a few details.

Assume that L(y"/")/L is a constant field extension. If L(y'/") = L, then v = ¥’ for
some b € L. Next, if L(yl/l) is a proper extension of L, we let M := L(’yl/l) NF,. Thus,
we have M # L NF, and ML c L(y*"). Moreover, since L(y*/!)/L has prime degree I,
we find that L(y'/') = M L. An extension of finite fields is Galois, hence M L/L is Galois
as well. In particular, the polynomial X' — v splits completely in M L and, by Kummer
theory, this shows that L(¢{;) C M L. Since [L({;) : L] divides both [ — 1 and I, we conclude
that L(¢;) = L. It follows that Fy, := L N F, contains an element v that is not an I-th
power. Therefore, X! — v is irreducible over L and ML = L(B), where 3 € F q 1s an [-th
root of v. The family {1, 8,..., 3} forms an L-basis of L(y'/"), and

-1
fyl/l = Z b’LBZa
=0

for some b; € L. Consider o € Gal(L(y'/")/L). By Kummer theory, o(y/!) = ¢4/ for
some 0 < k <[ — 1. Similarly, we have o(8) = (/"3 for some 0 < m <[ — 1. Hence

-1 -1 -1
o) =Gy b =0 (Z " ) =D b
i=0 i=0 =0
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By linear independence of {1,0,... ,Bl_l}, we obtain biClk = b(™ forall 0 <i <1—1.
Since only one i satisfies K = mi (mod [), call it ig, we conclude that b; = 0 for all 7 # 4.
Therefore, we have 'yl/l = b;, 3, that is, v = ubl, where p = %! = 1 and b = big-

Assume the result holds for some k > 1 and L(y"/ lk+1) /L is a constant field extension.
Then, L(’yl/lk)/L is a constant field extension. Hence v = ublk for some p € Fy, and b € L,
by the induction hypothesis. It follows that ¥ = B Moreover, since L(’yl/ lk+1) /L is a
constant field extension, we see that this is also the case for L(’yl/lkﬂ) = L(b*'") over L.
By the base case, there exists u € Fy, and ¢ € L such that b= uc, that is, b = ¢ because
b is monic. Hence y=M = A" and the proof by induction is complete.

Now, write n = ¢ - - - ¢s for some s > 2, where the ¢;’s are powers of distinct primes.

By the above, we have

ry:'u/lb({lzz'usbgs and f?:BiIlz...:qu,

S

for some b; € L™ and u; € Fz Since the g;’s are powers of distinct primes, we see that l~)1

is a g;-th power in L for all 1 < < s. Thus, 4 = b" for some b € L*. O

Note that this theorem can be generalised to finite algebraic extensions of Fq(T"). For

our purpose, only the quadratic case is needed.

3.1.2 On Kummer extensions

In this subsection, we prove an exact formula for the degree of Ly, 4 := L((p, ’yl/ d) over the
field F,, 4K, where IF), 4 = Fq N Ly, q is the constant field of L, 4, d,n are positive integers
prime to p such that d | n, and ¢, is a primitive n-th root of unity. Moreover, the genus
of Ly, 4 is showed to be bounded above by [L,, 4 : F,, 4L] times a constant. Finally, we give
properties of the Frobenius element of primes p € L,, 4 lying above certain primes P € K.

We use the following theorem in order to compute the field degrees:

Theorem 3.4. Let K be a field and a € K*. Then X" — a is irreducible over K if and
only if a & (K*)! for alll | n and a & —4(K*)* if 4| n.

Proof. See |17, Theorem 9.1]. O

Definition 3.5. We write v = puAl, where 39 € L is monic, p = sgn(y) € Fr, and h is the
largest integer t > 1 such that v is an t-th power in L.

Lemma 3.6. The largest v | d such that Ly, ,/L is a constant field extension is (d,h).
Moreover, we have Fy, g = Fr,(¢p, ,ul/(d’h)), where Fr, :==F, N L.

Proof. Put D = (d, h) and write h = Dk for some k > 1. Then

L, v"P) = LG, 1" P38) = Fr(Guy '/ P)L
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is a constant field extension of L. Hence D | v. Indeed, otherwise there would be a
prime power [¢ | (d,h) such that [* { v. Thus, v' = [I% v] is greater than v and divides
d. However, we find that L, , is the compositum of L, j« and L, over L((,), which
are constant field extensions. It follows that L, /L is a constant field extension, which
contradicts the maximality of v. Let us now prove that v = D. By contradiction, assume
there exists a prime [ such that [D | d and L(C,,7"/*P)/L is a constant field extension.
Then L(v/"P)/L is a constant field extension as well, and

D ~ID
v =we” = pet,

for some w € Fr, and ¢ € L, by Theorem 3.3. Hence 7 = &, which, by maximality of A,
yields that [D | h. A contradiction. O

Theorem 3.7. Leti = [Fr, : F,]. We have

i-ord,(q') - (d,h)
indFL(Cn)X (M), y h)

[Fn,d : Fq] = (

9

where indy, (¢,\x () is the index of p in the group Fy .

Proof. Tt is known that [F7(¢,) : F,] = iord,(¢"). We write u = indg, (¢,)x (1) and, by
Lemma 3.6, we have
]Fn,d - ]FL(C’/M /’Ll/(d’h)) = ]FL(CTM Ul/uo)a

where ug = (d, h)/(d, h,u) and v = ;. We claim that ug = [Fr.a: Fr(¢n)]. Indeed,
let us show that X"“° — v is irreducible over Fr((,) using Theorem 3.4. Let [ | up be a
prime. By contradiction, if v = ¢ for some ¢ € Fy,(¢,), then

= p(@hw) — Hdhw)

iordy, (¢%)

Because ug | ¢ — 1 and by the maximality of u, we obtain I(d, h,u) | w. This yields

a contradiction since I | ug. If 4 | ug and v = —4y* for some y € F1((,), then v = (2iy?)%
This is because 4 | uy implies that 4 | ¢dn(@) 1 50 —1 is a square in Fr,(¢n). This
contradicts what we proved in the above, and by Theorem 3.4, the polynomial X" — v is

irreducible over Fr,({y). O
Theorem 3.8. We have [L,, q : Fy, qL] = d/(d, h).

Proof. Put dy = d/(d,h) and write v = b@h) for some b € [F,,.aL. The latter is possible
because of Lemma 3.6. It suffices to show that X% — b is irreducible over Fp 4L using

Theorem 3.4. By contradiction, if b € (F,, 4L*)" for some prime I | dp, then L(yYUdmy /L,

1(d,h) Fl(d.h)

is a constant field extension and v = uc , where u € Fy, and ¢ € L. Hence 7 =
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and I(d, h) | h, which contradicts the coprimality of dy and h/(d,h). Finally, if 4 | dy and
if b = —4a2? for some z € FpaL, then b = (2¢422)? because 4 | dy implies that ¢4 € Fo.a-

We know from the above argument that [ = 2 is not possible. O

Now, we prove a bound for the genus of L, 4/F, q. It will be used on the bound of
Theorem 3.1, when applied to Kummer extensions, in order to get rid of the dependence

in the degree [L,, q : ), ¢K] in the upper bound.

Proposition 3.9. Let g, 4 be the genus of Ly, q4/Fy, 4. Then, there exists a constant cg > 0,
that only depends on vy and gr,, such that g, q < co[Lp,q : Frn qL].

Proof. Put M :=T,, 4L and let gy be the genus of M/F, 4. Note that L, 4 = M(al/do),
where dy = d/(d,h) = [Ly, 4 : M] by Theorem 3.8, and oo = v%“), with v € F,, 4 a (d, h)-th
root of p and hg = h/(d, h). Applying |34, Proposition 3.7.3| to L, 4 and M yields

gna =1 +do<gM ~1 +% > (1 - W) degM(P)>,

PePys

vp(a)#0
where Py is the set of primes of M and deg,;(P) = [Op/P : F,, 4] is the degree of P, that
is, the degree of its residue class field Op/P over F,, 4, where Op denotes the valuation
ring of P in M. Note that vp(«) = 0 if and only if vp(J9) = 0 because v is a constant and
ho > 1. Moreover, by [34, Theorem 3.6.3|, we have gy = gz, the genus of L/F,. Thus,

de P
gn,deo(gL—i— Z degn (P) )>.

PePy, 2
vp(70)#0
Let m = PN L, so that P is a prime lying above 7 in M. By [34, Theorem 3.6.3] again,
we know that Op/P is the compositum of O /7 and I, 4. Hence
[Op/P : F] (Or /7 : Fy]

degy (P) = [Op/P : Fr 4] = [Fra:Fyl B ([Or /7 By, [Fra: Fyl)’

and we find that deg,,;(P) < deg;(w). Since 49 € L, we have vp(59) = 0 if and only if

vz (%) = 0. Finally, because 7 splits into at most degy () primes in M, we obtain

deg/(P) degy () degL<7T)2
P D DD Dl s Dl st
PePy, 2 weP;, PEPy 2 wePy, 2
vp (50)#0 vr(50)#0 Plm vr (50)#0

and the result follows. O
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Lemma 3.10. Let P 1 Aay be a prime in K and p € Ly, 4 be a prime lying over P. We
denote by oy, the Frobenius element (Ly q/K,p). Then, we have

NP =¢ep (modn) and d|.y(P)
if and only if op = id when ep = 1, and otherwise

0p(Cn) = ¢t and  op(yM4) =474

n

Proof. Assume that NP = ep (mod n) and d | 1y (P). Then, we have

op(Ca) =GP = ¢ (mod p).

Since both sides are constants in L,, 4, we have equality. Next, let 7 := pNOp. On the one
hand, we have o,(v) = (L/K,7)(v) = v*". Taking the d-th root on both sides, we obtain
Tp (*yl/d) = Cclhep/d for some k € Z. On the other hand, we have

op(v4) = ANP/4 (mod p)

by definition of the Frobenius element. Now, because d | (y(P), we know that py(P)
divides (NP — €p)/d. Using Lemma 2.5, we obtain

Up(,yl/d) = ,Y(NP_GP)/d . fYEP/d = 'yep/d (mOd p)

Hence Cgfp/d = Hcp/d (mod p), and multiplying by =P/ yields C(’; =1 (mod p). Now,
because both sides are constants, we must have equality. Therefore, oy, is completely
determined by the relations

op(Ga) = G and oy(yM ) =471,

n

which completes this side of the equivalence.
For the converse, we have (/" = C,]lv P (mod p) by definition of the Frobenius element,
so that ¢'P~¢P = 1. It follows directly that NP = ep (mod n). Next, we have

yNPmeR) = (GNP /8 = gy ( Ty =P =1 (mod p),

which holds modulo 7. Therefore, we have py(P) divides (NP — ep)/d by Lemma 2.5,
and we obtain d | iy (P). O
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3.1.3 An arithmetic property of the multiplicative order

Let d, ¢ be coprime integers. The first result of this subsection gives some basic arithmetic
properties for numbers of the form (qN —1,d>). As a consequence, we prove a formula

for ordg,(q) that generalises the well-known formula

1, if1<k<a

ordy(q) = ordi(gq) - 4
"= itk >a,
where a = vl(qordl(q) — 1) and [ > 3 is prime, and its analogue for [ = 2. For every m > 1

such that f := ordg(q) divides m, we define P(m) the proposition
Pim): 2|ld, ¢g=3 (mod4) and 2{m, (3.1)

Throughout this thesis, we use the Iverson brackets, defined for all propositions P by
[P] = 1if P is true, and [P] = 0 otherwise. The following lemma is enough to see that

interesting things might happen when the proposition P(m) is true:

Lemma 3.11. Let m,n,q > 1 be integers with (d,q) =1 and d | ¢™ — 1. Then

" L0 = (1 Yy A H P =T end 2] n:
’ 7 ’ 1, otherwise.

Proof. The map d — (k,d*), where k is a fixed integer, defines a multiplicative function.
Thus, it suffices to prove the result for (¢"" — 1,1°°), where [ | d. By [3, Lemma 4]
and [2, Proposition 2.4, and by replacing ord;(q) by m and ¢ by ¢™ respectively in the

proofs, which is allowed since it only uses that [ | ¢"* — 1, we obtain

¢ —1 2v2(@"+ D=1 if | = 92 and 2 | n;
N7 )= u(n) +
1, otherwise.
The result follows using v2(¢™ + 1) = 1 if P(m) is false. O

Lemma 3.12. Let ¢ > 1 be prime to d and f = ordg(q). For allv | d*, we have

2

2f —1,dv)’

(qf - 17 d’U)7

P =1 and 2 | v

otherwise.

Proof. Assume va(d) # 1 and put n = dv/(¢' — 1,dv). By Lemma 3.11, with m = f and
n = n, we have dv | ¢/™ — 1. Hence n = tm, where m > 1 and ¢ := ordg,(¢q)/f. By Lemma
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3.11 again, we have

dv
(¢f —1,dv)(m,d>)’

so that m = (m,d>®) divides (¢/ — 1,d®)/(¢/ — 1,dv). But the latter is coprime to n,
which yields that m = 1. Next, assume that 2 || d and note that for any odd integer n > 1,
we have ordy,(q) = ord,(q). When 2 { v, we have ordg,(q) = ordg,/2(q) and we conclude
using what we proved in the above. When 2 | v, put D = 2d and u = v/2, so that

ordp(g)dv
(@0 1, dv)’

ordg,(q) = ordpy(q) =

by the above again. We have ordp(q) = [ord(q), ordg/2(q)] = [ords(q), f] because 22|D,
and we conclude using that ords(q) equals 1 or 2, whether ¢ = 1 (mod 4) or ¢ = 3 (mod 4)
respectively. O

3.2 The ds-density of R/ (v,d)

Throughout this section and the rest of this chapter, we write e}, = (¢"¥ —1,d>)/d for all
N > 1 divisible by f := ord,(d). Recall that R;(’y, d) is the set

R;‘('y,d) ={P € Py:PtfAag, d|py(P)and ep = 1}.

In this chapter, we prove that R(‘; (7,d) has a ds-density. Moreover, we obtain a formula

for the density in the form of a series on the divisors of d*°.

3.2.1 The proportion by degree

Given a natural number N > 1, we first study the function R;r('y,d, N) that counts the
number of primes in in R;’ (7,d) of degree N. By Lemma 2.5, we see that d must divide
¢V —1 for R;(’y,d, N) to be positive. Therefore, the order f = ordy(q) must divide N.
Note that [y, : F,] must divide N as well. Indeed, when L = K or L/K is geometric, we
have Fy, = F, and [Fz : Fy] = 1 trivially divides N. However, when L = F;(T), by [29,
Proposition 8.13|, a prime P € K splits in L only if it has even order, i.e., [Fr : Fy] | N.
Therefore, we consider positive N =0 (mod f1), where f, = [[Fr : F¢], f].

For a Galois extension M /K, we let { M} denote the set of primes in K that completely
split in M and {M} y the number of those primes that have degree N. In our first result,
we write R} (v7,d,N) as a linear combination of functions {Lyng4}n. It is an analogue

of 21, Proposition 1] in the classical case.



26

Lemma 3.13. For each N =0 (mod f1), we have

’77d N Z ZM {Ldv,uv}N'

’U|8 uld

Proof. Let S(N) be the set of monic irreducible polynomials in R;’ (7,d) with degree N.
Any prime P € S(N) satisfies

deg(P)=N, PtAaz, d|py(P), and ep=1.

Since ¢ —1 = py(P)wy(P), the condition d | py(P) is equivalent to d(vy(P),d™®) | ¢~ —1,

that is, there exists a unique v | d* such that

dv|¢¥ =1, v|w(P) and <LUE)P),d> =1. (3.2)

The last condition in (3.2) is equivalent to (v t ¢y (P) for all primes [ | d. Hence, S(N) is

sV = || (sl,vuv) \ Usl,vuv)),

+
vley ljd

the disjoint union

where S, ,(N) = {P € S(N) : dv | ¢ —1and wv | ty(P)}. Finally, the set S, ,(N)
has cardinality {Lgy uv}n by Lemma 3.10. The result follows by the inclusion-exclusion
principle. O

Lemma 3.14. If [F, 4 : F,] t N, then {L, q}n = 0. Otherwise, there exists c; > 0, that
only depends on v and L, such that

qN (d7 h)
N [L:FK]d

N/2

{Ln,d}N -
Proof. It suffices to apply the Chebotarev density theorem, i.e., Theorem 3.1. The exten-
sion Lg4/K is Galois since it is the splitting field of X% _~if L =K, and of

(X=X = or(v)),

otherwise, where o, is the non-trivial automorphism of L/K. They are separable polyno-
mials because p { n and v # 0. It follows that L, 4/K is Galois as well since Ly, 4/Lq 4 is
a constant field extension. We choose C = {id} for the conjugacy class, as P € K splits
completely in L,, 4 if and only if (L, 4/K,p) = id, where p € L,, 4 is a prime above P. It
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follows from Theorem 3.1 that {L, 4}y = 0if [F), g : Fy] t N, and that

N 1 N/2

valid for all N > 1. We have

1 1
€1 =Co 1+> +
< Va N
where ¢y depends only on v and L. The result follows using Theorem 3.8. 0

For the rest of the chapter, we write fy, = [Fayuy : Fq] for all w | d and v | d*°.
Combining Lemmas 3.13 and 3.14, we obtain the following theorem in which f, , plays a

crucial role:
Theorem 3.15. For each positive N =0 (mod fr), we have

N +\,,N/2
i w T(en)q
R;(77d7N)_W'5q+(”y,d,N) <2 (d)Jrlcl.NT,

where ¢y is the constant defined in Lemma 3.14 and

h
0q (1., N) = [L[;LKZZMZU)[JZU!N]
v|e+ uld

Proof. Let S;(’y, d, N) denote the difference R;(’y, d,N)— 5;(7, d,N)¢" /N. Using Lem-
mas 3.13 and 3.14, we have
N/2

+
1Sy (7, d, N)\<201 ZZW w(d)+1,, .m

N b
v|e+ uld
the sought result. O

3.2.2 The existence of the density

The proof of the existence and the computation of the ds-density of R('; (7,d) requires to

partition N into a countable union of distinct arithmetic progressions, following a method
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of Ballot [3]|. Recall that fr, = [[Fr, : Fy], f]. We have

fo—1

N = |_| Siu || |_| Ay o, (3.3)

w|d>® (aad)l
where S; = {frn+j:n >0} and Ay o = {frw(a+dn) : n > 0}. We have §; (v,d, N) =0
for all N € S;. This is because R;}' (7,d, N) is empty only if f, { N. For N € Ay, o, we have
ej(, = e;fL » Py Lemma 3.11, which is an integer that depends only on w. Moreover, we have
fuw | N if and only if f,, | frw. Indeed, by Theorem 3.7, we have f, , = iordg,(¢")ko for
some ko | d°, where i = [F, : F,]. By Lemma 3.12, we have iordg,(¢") = frki for some

k1| d>*. Hence fy = frk, where k | d*°. We obtain

50, N) = e S S M gy g, (3.0

v\e Tw uld

which is a constant that does not depend on n, nor a. We denote this quantity by 6., and
define 0, (v, d) as

65 (7,d) = 3.5
fon = 2D 5 % 35
w|dOo
We show that 5;(7, d) is the d3-density of the set R;(% d).
The following lemma displays two results that can be found in the literature. (See for
instance the proofs of |21, Lemma 2] or [30, Lemma 6.3].) However, the proof is usually

left to the reader. Here, we provide a short proof.

Lemma 3.16. There exists co > 0 such that for every x > ezw(d), we have

2 1 w(d)
Z 1< eplog(z)“ D and Z — %.

w|d> wiae
w<z w>x

Proof. Let My(z) denote the sum on the left. We see that My(x) is bounded above by the

product of log;(x)+1 for all prime divisors [ of d. We have log;(z)+1 < log(z) for all primes

e? <1<z Ifl <é? then there exists a constant C; > 0 such that logl( )+ 1 < Cjlog(x).

Then, we choose ¢3 equal the product of the C)’s over all primes | < e%. Next, we apply

the Abel summation formula to the series on the right, so that My(x) re-appears. We find

Lo M), Male) 02/ log ("7 1,
t2 x - t2
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Call I(z) the integral on the right-hand side of the above inequality. For x > ezw(d), we
see that I(z) — 2log(z)*? /z is an increasing function that converges to 0 as z tends to
infinity. Hence I(z) < 2log()“@ /2 and the result follows. O

Lemma 3.17. For every N > ezw(d), we have

. 1 w(d)
N Z&j(%d,n) — 5;_(’)/,d)‘ < cop(d) (1 + df> Og(]\[)’

where co is the absolute constant defined in Lemma 3.16.

Proof. From the partition of N given in (3.3), we have

N
Sy = ;72:1(5; v,d,n) = NZ Z:l Ay o(N
= wl|d>® «
(a,d)=1

where Ay, o(N) = #Ay.qo N [1, N]. Moreover, we used 5;(7, d,n) =0, if n € Sj, and
5;(7, d,n) =67, if n € Ay o Note that w < N and

Apa(N) = V\H— Jrw(d — Q)J’

df pw

which, by the properties of the floor function, satisfies

N
—1 <AL (N) < 1.
T T
Therefore, on the one hand, we have
o(d) 5;5 ‘P(d) +
Sy > —— )
N= dfr, %;o w N Zd;o v
w<N w<N
(v 5t 0ib
=0} _ Y _ Y Ow
e Z "
w|d>® w|d>
w<N w>N
and on the other hand,
»(d) N
Sy < - 4 = o
N = afL + Zd;
w<N w<N
~sita+ B0 Y g - S0 s
w|d>® |d°°

w<N w>N
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Finally, we obtain

d) o(d) &F 2\ log(N)«(@

Sy — 61 (v, d <¢ ab +— —“’<c {1+ —— ) ———F—,
w<N w>N

where we used that 6, < 1, and Lemma 3.16. O

We are now ready to prove the main result of this section, which is that 5; (v,d) is the
ds-density of R (v,d).

Theorem 3.18. There exists a positive constant cg > 0, that may only depend on d,
and gr,, such that

RS (7v,d,n)

'N T _‘53<%d)‘ﬁcw(d)(1+>W+

c3
dfr, N’
for all N > e2w(d), where co is the constant defined in Lemma 3.16. In particular, R; (7,d)
has ds-density equal to 6, (7, d).

Proof. First, we put

N
1 By (v.d.n)
By =N

n=1

N
1
and Sy = N Zé;(% d,n).

By Lemma 3.17, for all N > 2@ we have

log (N)“(@

Ry = 6, < 1Ry = Sl + eag@) (14 - ) 22T

df

Let us bound |Ry — Sy|. By Theorem 3.15, and since 5;(7,d, n) = 0 if fr 1 n, we have

R+ ’7,d ’I’L 2w(d)+lcl N

Ry — Syl < . — 65 (v dn)| < ——— (e
¢ /n 1 N —=
len frin

By Lemma 3.11, we see that e, < 2”2(qu+1)e}'Ln/fL. This implies that the number of
divisors of e/ is at most vy(¢’F + 1)7’(6}_L)n/fL, using 7(m) < m for all m > 1. Hence

2 (d) 1}2(qu + ]_
’RN—SN‘ < Nf an*n/Q . an*n/Q
fLIn fLIn
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We obtain .
x —fL/2
c _ c q C3
Ry — Sy| < —— I
frin
This completes the proof of the bound. Letting N tend to infinity shows that the set
R (7,d) has ds-density equal to 0, (v, d). O

Corollary 3.19. The set R} (v,d) has dy and Dirichlet density equal to 5, (v, d).

Proof. Theorem 3.18 establishes the existence and the value of the ds-density of R;r (v, d).
The result follows from [4, Theorem A|. O

We successfully proved the existence of the ds-density of R;’('y,d) for the non-trivial
cases. However, the density (5; (v,d) is expressed via a series on all divisors of d*°, which
makes its computation difficult. We dedicate Chapter 4 to the search of a closed-form
formula for the density, that is, an expression that requires only finitely many simple

operations.

3.3 The d3-density of R (v,d)

In this section, we follow the same method as in the previous one to prove the existence
of the ds-density of

R;(%d) = {P € Py PJ[ACLQ, d | pU(P) and ep = —1}.

That is, we first study the function R (v,d, N ) that counts the number of primes in
R, (7,d) that have degree N. Next, we partition N in a way that allows us to find the
ds-density expressed as a series.

Note that in many cases, the set R (7,d) is empty. For instance, when L = K, every
prime P € K satisfies ep = 1. Moreover, when [L : K] = 2, if there is no integer & > 1 such
that d | ¢* + 1, then R, (7, d) is empty because d needs to divide NP +1 = q1es() 11 for
all primes P € R (v,d). Therefore, for the rest of the chapter, we assume [L : K] = 2 and
the existence of k. Note that |5, Theorem 27, Section 2| provides necessary and sufficient
condition for the existence of k. When it exists, we have f =k =1if d = 2, and f = 2k
otherwise. Now, we have only two cases to consider: 2 | f and (d,q — 1) <2, and d = 2.

This comes from the following elementary lemma:

Lemma 3.20. Assume d | ¢* +1 for some k > 1. Then, R (7, d) is not empty only if
either 2| f and (d,q—1) <2, ord = 2.
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Proof. Let P € R, (7,d). Since d | py(P), we have d | NP + 1 by Lemma 2.5. We first
assume d > 3. We saw that 2 | f because of the existence of k > 1 such that d | ¢* + 1.
Now, let [ be a prime that divides (d,q — 1). Then, [ divides NP + 1, which implies [ = 2,
since (NP +1,q — 1) < 2. We write (d,q — 1) = 2" for some n > 0. We trivially have
n <1 when ¢ =3 (mod 4) or 2 | ¢. When ¢ =1 (mod 4), we have vo(NP + 1) = 1, and
thus ve(d) < 1 and n = va(d). O

The case d = 2 turns out to be quite peculiar and is treated in a separate subsection.
However, the method remains the same and, in both cases, we write R’ (v,d, N) as a linear
combination of functions Cn(Ly, q/K,C) defined in Theorem 3.1, where d | n. Here, we
take C as the conjugacy class of a single element o € Gal(Ly, 4/K), when it exists, such
that o(a) = b, o(¢) = ¢ 1, and o(y/9) = 471/,

Lemma 3.21. Assume that there exists o € Gal(Ly, 4/ K) such that o(a) = b, 0(¢,) = ¢,
and o(y*%) = 47V4. Then, o belongs to the center of Gal(Ly, 4/K).

Proof. First, note that L((,)/K is an abelian extension. If L = F 2L, then L((,)/K is a

constant field extension, which is always cyclic. If L/K is geometric, then
Gal(L(¢n)/K) = Gal(L/K) x Gal(K (¢n)/K),

by |17, Theorem 1.14| because L N K(¢,) = K. But L/K is abelian since it is a quadratic
extension, and K ((,) is an extension of the field of constants. Hence L((,)/K is abelian.
Now, we know that any automorphism oy € Gal(Ly, q4/K) is uniquely determined by the

/4 Therefore, we only need to check whether o007 (z) = o(x)

images of a, (,, and ~
for all o1 € Gal(Ly, 4/K) and z € {a, o,y /Y. By the above, we know that it is true for
x € {a,(,} by restriction of o and o1 to L({,). Finally, since o1(7) is equal to one of 7
and v~!, we obtain crl('yl/d) = Cé“'yﬂ/d for some k € Z. It is then easy to verify that o

and o1 commute. O

We proceed as in Section 3.2 by looking at the fields Ly 4, where u | d and v | d*°.
Again, we call o, the automorphism of L, ., defined in Lemma 3.21, when it exists. That
is, the automorphism such that o, ,(a) = b, 0y (Caw) = (), and Juyv(vl/“”) = L,
Finally, we write ey = (¢" +1,d*)/d for all N > 1 such that d | ¢"¥ + 1.

3.3.1 Thecase2| fand (d,g—1)<2

Note that by our hypotheses, we have d | ¢" + 1 if and only if f | 2N and f { N. Thus, we
assume N = f/2 (mod f). Otherwise, R, (v,d, N) = 0.
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Theorem 3.22. For each positive N = f/2 (mod f), we have

N -\, N/2
- - q w T(en)q
Rq(rY’d’N)_éq (’Y’d’N)'W <2 (d)Jrlcl~(]\i]\)[7

where c1 > 0 s the constant defined in Lemma 3.14 and

oy (v, d,N) = [L;LKZZMZUM By (u,v),

vley uld
with By (u,v) := [0y, exists and N = f,,,/2 (mod fy0)].

Proof. As in the proof of Lemma 3.13, we write R (v,d, N) as a double sum. Note that
ep = 1 should be replaced by ep = —1, and ¥ —1 by ¢ + 1. We obtain

T d, N =D " (w)

vley uld

where S, ,(N) is the number of primes P { Aag in K of degree N such that ep = —1,
dv | ¢~ +1, and wv | 1y (P). By Lemma 3.10, this is equivalent to (Lgy /K, p) = 0y, for
all primes p € Lgy v lying above P, when o, exists. Hence S, ,(IV) counts exactly the
primes P whose Artin symbol satisfies (Lgy 4o/ K, P) = {0}, since the conjugacy class of
Ou,v 1s the singleton {0y, } by Lemma 3.21. Therefore, with the notation of Theorem 3.1,
we have S, (N) = COn(Lav,uv/ K, {oup}) - [0 exists]. We now want to apply Theorem
3.1 to CN(Lavuv/K,{ous}) for all w | d and v | ey whenever o,, exists. First, we

determine k& > 1 such that oy, where 7 is the Frobenius automorphism

’de,uv =T |]de,uv7

of Fgy y/Fq. Since 057,0 = id, the same is true for the restriction. Therefore, 0u7v|de’M is
either the identity, or has order two. The relation oy, ,((a) = ((;)1 ensures that it has order

two, because d > 3 and (g, # C@l We obtain
T2k|]Fd'u,uv = ld and TkhFd'u,u'u # 1d7

which implies that f,,/2 is a good choice for k. By Theorem 3.1, we obtain

1
[Ldv,uv : de,uv K]

gN/?
N )

(3.6)

qN
’CN(Ldv,uv/Kv {Uu,v}) - N’ < 2c -

for all N = f,,/2 (mod fy.), where ¢; > 0 is the same constant as in Lemma 3.14.
Otherwise, we have Cn(Lgy,uv/ K, {oun}) = 0. Finally, we obtain

N
- q
’Rq (77d7N) 5 (77dN ‘<26122|N Fa

vley uld
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where we used (3.6), Theorem 3.8 for the degree, and By(u,v) < 1. The right-hand side
is equal to 2w(d)+1617(eﬁ)qN/N, the upper bound we sought. O]

We compute the ds-density by partitioning N in a convenient way. The partition we
use is different from the one used in Section 3.2. We have N = A LI B, where A the set of
positive integers N # f/2 (mod f) and

a=1
a,[2,d])=1

d
B= || || Bua (3.7)
’I,U‘dloo
(

where d' = d/(d,2%°) and By, = {fw(a+(2,d]n)/2 : n. > 0}. We see that §, (v,d, N) =0
for all N € A since R (v,d,N) =0 when N # f/2 (mod f). Moreover, we have
+ +

s — €an _ €fw
No(gN —1,d®)  (¢N —1,2%)’

for all N € By o, by Lemma 3.11 and because (¢" + 1,¢" — 1) < 2. Since va(N) = va(f)
and because 2 { w, we have (¢ —1,2%°) = (¢/% — 1,2%°). Hence EN = €hyo for all
N € B, , which only depends on w. We obtain

_ 1 u)(uv, h
O (%d7N):m Z %’LL()T(W)'BN(%U%

v|e;w/2
for all N € By o. The best-case scenario would be that . (7,d, N) only has a dependence
on w, akin to its analogue &, (v,d, N) in (3.4). Combining Theorem 3.7 and Lemma 3.12,
we see that f,, = fk for some k | d*. Therefore, the congruence N = f, /2 (mod fy )
is equivalent to fw = fy, (mod 2f,,) for all N € By, o. Hence, we let

5o = M;m 3 Z‘W-B(u,v), (3.8)

v\e]fw/2 uld

where B(u,v) = [0y, exists and fw = f,, (mod 2f,,)]. We are now ready to prove the

main theorem for this subsection, which states that

5 (7, d) = ;9[‘;(7?] 3 ‘% (3.9)

w|d/00

is the d3-density of R (v,d).
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Theorem 3.23. There exists cq4 > 0, that only depends on d, v and gr,, such that

Ry (v,d,n)

‘N q/n +

“
N N’

4 ) log (N)“(@)
If

— 6 (y, d)‘ < eap(d) (1 TR

forall N > e2w(d/), where cy is the constant defined in Lemma 3.16. In particular, R, (7,d)
has d3-density equal to 6, (v, d).

Proof. The proof is similar to the proofs of Lemma 3.17 and Theorem 3.18, so we may skip
a few details. We define

N — N
1 ZRq (v,d,n) 1 S
RN = Nn:1 W and SN = anl 5(1 (’}/,d, n)

We aim to bound |Ry — Sy| and [Sy — 6, (v,d)|. By Theorem 3.22, we have

N — N
1 Rq (77 d, n) — 2w(d)+1cl I g 2
’RN—SN‘SNZ W_éq(%d) =7 N ZT /7
n=1 n=1

where >’ indicates that indices are taken congruent to f/2 modulo f. By Lemma 3.11,
we show that e, = ej /(¢" —1,d™) = e;/2(2n/f, d>). Hence

N N opgn/? [(2N—f)/2f]
S re)a ™ < rler) Y T =r(ep) S (14 2k)g ORI
n=1 n=1 par
where we used that (e, ) < 7(e f/2)2n/f Because ¢ —f/4 1, we obtain
20(@+le 7 (e 20 dtle r(e7, Vg T/
_ 7/2) fn/4 _ €rp2/d .G
|Ry — Sn| < an NI 1) = -

We now turn our attention to |Sx — d, (7, d)|. Using (3.7), we have

[2,d]

2(5 (v,d,n) = Z Z Buy,a(N)dy,,

w|<N (a, [2 d}) 1

where By o(IN) = # By, N [1, N, where we took into account that §, (v, d,n) = 0 for all
n € A. We have

Bua(N) = {2N+ fw([2,d] — a)J’

f2, djw
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and, similarly to the proof of Lemma 3.17, we find the upper bound

Sn <6, (v, d) + 2e(12.d) > Ow | ‘P([]?V’d]) > 6,

w|d/oo w|d/oo
w>N w<N

and the lower bound

PR T B LI i 1

w|d/oo wld/oo
w>N w<N

By Lemma 3.16, and since ¢([2,d]) = ¢(d) and d,, < 1, we obtain

4 > log(N)«(@)

5 = 85 ()] < e (14 5 )

for all N > e*(*). The inequality |Ry — 0, (7,d)| < |[Ry — Sn|+|Snx — 8, (v,d)| and our
bounds yield the result. O

3.3.2 The case d =2

We now assume that d = 2. Since (d,q) = 1, we may use the Legendre symbol (A/P)
instead of the ep notation for all P € A.

As mentioned before, this case is somewhat different. Indeed, the study of R, (7,2, N)
has two cases: ¢ =1 (mod 4) and ¢" = 3 (mod 4). In some special cases, we obtain
that R (7,2) has a positive dj-density. However, any hope of having a similar result for
the full set R4(7,2) will vanish in Section 3.4, where we prove that R,(v,2) does not have
a dp-density.

Lemma 3.24. Let u € Fy be the leading coefficient of as. Then, we have

. . X\2,
Fao : F,] = 2, ifFL=Fp, or2|[handudg (F;)%;
1, otherwise.

Proof. By Lemma 3.6, we have [y 5 = FL(,ul/(z’h’)). Moreover, because v = a2/a2, we can
write = sgn(a)?/u. Then, we can replace p by u to obtain Foy = Fr(u'/ M) Now,
because u € Iy, it follows that Fo o = Fp2 if F = F 2. Otherwise, Foo = Fq(ul/(2’h)) and
the result follows trivially. O

Theorem 3.25. Let N > 1 be such that ¢ =1 (mod 4). Then R;(v,2,N)=01if2|N
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and Fao =TF 2. Otherwise, we have

N/2

_ 1 (09,1 exists] v q
R-(~.2,N) — _ 1%, A PP S
‘ ¢ (12, N) <[L:FLK] [L272:F272K]> N| =V TN

where c¢1 > 0 s the constant of Lemma 3.14 and 021 was defined below Lemma 3.21.

Moreover, og1 exists in the Galois group of Lo o/K if and only if 21 h, or
(1) 2 | h, Fr, = Fq and pu g (F;)2z or
(2) v € (LX) and op(v"?) =472,

Proof. Let P € R (v,2) have degree N. Since va(¢ +1) = 1, we have 2 | py(P) if and
only if 2y (P). By Lemma 3.10, we have

R, (7,2,N) =Cn(L/K,{or}) — Cn(L22/K,{021}) - [02,1 exists],

where the Cy functions were defined in Theorem 3.1.

First, we apply Theorem 3.1 to Cx(L/K,{or}). We have op|p, = 7%, where 7 is the
Frobenius automorphism of F/F,, and k& = 0 if F;, = F,;, and k¥ = 1 otherwise. By
Theorem 3.1, we obtain Cn(L/K,{or}) =0if 2| N and Fy, =F 2, and

1 ¢V ¢N/?
Cn(L/K {oL}) — T FK N < 201 T (3.10)
otherwise, where ¢; > 0 is defined as in Lemma 3.14.

Next, we study Cn(L22/K,{021}). If 021 exists, then o21|r,, = 7% where 7 is the
Frobenius automorphism of Fy 5 /Fy, and k = 0 if Fo 5 = Fy, and k£ = 1 otherwise. We used
the definition of ¢ and Lemma 3.24. By Theorem 3.1, we obtain

1 qN qN/2
CN(L2,2/K’ {02,1}) - m : W < 2c - Ta

(3.11)
for all positive N = k (mod [Fo9 : Fy]), and Cn(L22/K, {o2,1}) = 0 otherwise. The result
follows by putting (3.10) and (3.11) together.

Lastly, we prove the conditions for the existence of og;. Since 021|, = o, it suffices
to find conditions for o7 to be extended into the right automorphism. Assume 2 { h.

Then, the polynomial f(X) = X2 — ~ is irreducible over L. Since Loo = L[X]/(f(X)),

1/2

we can extend oy, into o9 if and only if o f annihilate v/, This is the case, since

or(v) ="

Finally, assume -y is a square in L. Then Lo = L, and o2 exists if and only if 091 = oy,
and op,(y"/?) =471/, O

The same applies to the case 2 | h, F, = F, and p is not a square in Fy.
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As mentioned at the beginning of the subsection, we obtain a positive di-density in

some cases. Assume ¢ =1 (mod 4) and Ly /K is geometric. By Theorem 3.25, we have

(3.12)

B (n2.N) <1 _ Pmemtsl) < derg N2,
¢V /N 2 2[Lep: L]

for all N > 1. Letting N tend to infinity, we find that R, (v,2) as a di-density either equal
to 0, 1/2, or 1/4. For the remaining cases, the following corollary provides the value of the
d3-density of R, (v,2) when ¢ =1 (mod 4):

Corollary 3.26. Assume ¢ =1 (mod 4). Then, for all N > 1, we have

2, ‘
Z Bg(n2m) (1 fooa ewists]\| _ (_der | 3) 1
N ”/n 2 2[[;2,2 L] \/a—l 4 N
Necessary and sufficient conditions for the existence of 021 are given in Theorem 3.25.

Proof. If Fap = g, then di (R (7,2)) exists by the discussion above the corollary. Then,
using (3.12), the bound for the d3-density is given by

LR S <da io . S (3.13)
anlq = anlq (Vi— N’ '

If Foo = Fp, then R (7,2,N) =0 for all even N > 1, by Theorem 3.25. We have

G 1 i < 1  [o2,1 exists] > 1 <1 o2 exists]> +FV)
MTUNSN\[LFLK]  [Lap:FapK]) 2 (Lo : L] ’
2tn

where f(N) < 3/4N for all N > 1. If Ry denotes the average of the R, (v,2,n)/(¢"/n)
from n =1 up to N, then

1 [o2,1 exists] 1 [o2,1 exists]
Y I el B | P _ [ R St e |
'RN (2 2[L2,2 : L] )‘ - |RN SN| + 'SN (2 2[L2’2 : L]

for all N > 1. We use the bound of (3.13) for |Ry — Sy|, and the bound 3/4N for the

second term. O

Example 3.27. Let a1 = ap =T and ¢ = 5. We have h =1, so that Ly o = L(’yl/2) has
degree 4. By Corollary 3.26, we find that 55 (v,2) = 1/4. We computed

6 —
1 R5 (77 2)
- ——~— - ~(.251989
6 Z 57 /n ’

n=1
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which matches the theoretical value of 1/4.

Lemma 3.28. Let N > 1 be an odd integer and assume ¢ =3 (mod 4). We have

N =\, N/2
- - q T(e1)q
Rq(’.}/?Q’N)_éq(’Y,Q,N)'N‘S4Cl']']v7

where c; > 0 is the constant defined in Lemma 3.14 and

21: w - By (27,29,

[L:FrK]

where By (27,2"), i > 1, was defined in Theorem 3.22, and By(2,1) = [0 ewists] and
By (1,1) = 1 otherwise.

Proof. As in the proof of Theorem 3.22, we show that

v2(ey)

R;(v,2,N)= > (CN(i,O)CN(z',l)), (3.14)

=0

where C (i, j) is defined for all 1 <14 < wa(ey) and j € {0,1} by
CN(i,j) = CN(L2i+1’2i+j/K, {O'Qj?Qi}) . [0'2j72i eXiStS].

where 0y; 9i was defined below Lemma 3.21. Because 21 N and ¢ = 3 (mod 4), applying
Lemma 3.11 to v2(¢?™ — 1) and va(¢" — 1) implies that va(¢™ + 1) = va(g + 1) for all odd
integers V. Hence, we replace ey by e in (3.14). We study the case i > 1. If 0y, 9i exists,
then it has order two by definition. It follows that its restriction to Fgit1 9i+; has order
two because (yit1 is sent to C;zil # Caiv1. Hence k = fy; 5i /2 satisfies 02]-721-@2“1’21.“ =7*
where 7 is the Frobenius of Fyit1 9i+;/Fy. By Lemma 3.21, 0y, oi belongs to the center of
the Galois group. By the Chebotarev density theorem, i.e., Theorem 3.1, we find

(2i+j’ h) qN qN/2

L 1<92

ONGd) = 5L FL K] N N

for all N = fy; 9i/2 (mod fo; 9i), where ¢1 > 0 is the constant of Lemma 3.14. Otherwise,
we have Cn(i,5) =0. If i = j =0, then 01,1 = o, the non-trivial automorphism of L/K,
which always exists. Its restriction to [Fy, is either the identity element if F;, = F,, and has

order 2 otherwise. The integer

0, if L/K is geometric;
k= (3.15)

1, otherwise,
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satisfies op|p, = 7%, where 7 is the Frobenius of F7,/F,. By Theorem 3.1, we have

N N/2
g < 2c - 4 ,

Cn(0,0) [L:FLK] N N

for all odd N =k (mod [Fr, : Fy]). By definition of k, we see that the bound holds for all
odd N > 1. If j =1, then 09 is entirely determined by the relations

0271(\/5) = —vA and 0271(71/2) = 771/2.

By Lemma 3.24, we know that Fs 2 has degree at most 2 over IF,. Therefore, we define k
in a way similar to (3.15), so that Theorem 3.1 yields

N N/2
(2,h) ¢ <90 4

Cn(0,1) TALFEN| S TN

for all odd N > 1, using the same reasoning as before. The result follows from applying
the bounds to (3.14). For the final bound, we follow the same path as in Theorem 3.22. [

Theorem 3.29. Assume q =3 (mod 4). For each N > 1, we have

< 801T(€1_)+Z i7
RNRV/E 4) N

where c; > 0 is the constant defined in Lemma 3.14 and

Z B2 s

=1

$ED@I g0 g

5(; (77 2) = 50 + 9itj

where B(27,2") = [09; g exists and 2| fos 2] if i > 1, Bn(2,1) = [021 exists], By(1,1) =1,
and 6o = 0 if Fa 2 = F 2, and otherwise,

S 1 [o21 exists]
074 4Ly, L)

Necessary and sufficient conditions for the existence of oa1 are given in Theorem 3.25.

Proof. As usual, we study the sum
%2 n)

We write S;(N) and S2(N) for the parts with odd and even indices respectively. From
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Theorem 3.25, we see that So(N) = 0 if Fa 2 = F 2. Otherwise, we have

1 [og exists] 4eq 1\ 1
Y I k. siiiic B B BV Z) =
52(N) (4 A[Lays : L] )"(ﬂ—1+4> N’

by following the proof of Corollary 3.26, and since

Lo~ [021 exists]\ /1 [o2 exists]
NZ<2_2[LL1) - <4_W>+f(N)’
2|n

for some f(N) < 1/4N.
For the sum S1(N), we first prove that B, (27,2"), which was defined in Lemma 3.28,

does not depend on n when ¢ > 1. By Theorem 3.7 and Lemma 3.12, we have

942 (2i+j, h)
faigi = 1.2¢+1)  (ind 2i+i h)’
(q -4 ) (III FL(§2i+1)(/’L)7 ) )

We see that fy; i = 2™ for some m > 1. However, the condition n = fy; 5:/2 (mod fo; 5i),
which appears in the expression of Bn(2j , 2i) has to take into account the parity of n to

hold. Since n is odd, this happens if and only if 2|| f; oi. Hence
By (27,2") = [0g; giexists and 2| fos 21 =: B(27,27),

for all odd n > 1. The expression of §,° (7,2,n) in Lemma 3.28 does not have any depen-
dence on n. We write 6~ := d, (7,2,n). We find that

o~ degr(ey) 307\ 1
— < —
Si(N) 2‘_<\/§—1+ 5 ) v

for all N > 1, where we followed the method used for S2(N). Finally, since ~ must be

less than or equal to 1, we obtain

Si(V) - ‘52_‘ T 1S5(N) — 6] < (8%(_6? n D +

the result we sought. O

3.4 On the d; and d;-densities

The purpose of this section is to prove that the di and da-densities of Ry(7,d) do not exist
except in some trivial cases. Because the d; and da-densities are equivalent, see [4, Theorem

A], we will work with d; only. Let us consider the case d = 1. Since 1 always divides py(P)
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for primes P { Aag, we have
Ry(v,1,N) =1In —an,

for all N > 1, where ay counts primes P of degree N such that P | Aas. Note that ay is
zero for all, but a finite number of N’s. Hence, as expected, the quotient Ry(v,1, N)/In
converges to 1 as N — +oo and di(Ry(7,1)) = 1.

Another trivial case arises when +y is a constant in L, say ¢ € F;. We have a = (b, and
by Lemma 2.2, this is equivalent to U being a degenerate Lucas sequence. In that case,

the rank of any prime P in U is equal to orsz (¢). We obtain

Iy —apy, ifd|ord,x(();
Ry(Gd Ny = T i lerd (O
0, otherwise,

for all N > 1. We conclude that di(R,((,d)) is either 1 or 0, depending on whether
d | orsz (¢) or not, respectively. Note that it includes Lucas sequences for which a?/as is
a constant in K.

Lastly, when p | d, there is no prime P t Aag such that d | py(P). This is because
the rank of P divides NP — ep, which is congruent to +1 modulo p. Hence, we have a
di-density equal to 0 in that case.

We now tackle the general case. We need the following lemma on the multiplicativity

of the function [f,, | N] of the variable u, u | d, where N > 1 is an integer and v | d*:

Lemma 3.30. Let N > 1 be such that f1, | N. Then, the function w > [fy., | N] is

multiplicative for all v | d™.

Proof. 1t suffices to prove that fu,us 0 = [fus vs fus,w] for coprime wuy, ug | d. Indeed, it will
follow that fy 4, | IV if and only if both f, , and f,,, divide N. Recall that 1 € IFE is
the sign of v in L and [Fy, : Fy] is denoted by the letter i. We have

q- —1

indFL(Cdu)X (M) = m

where 7 = i - ordg,(¢") and m = ordg, (¢,,)x (1) = ordpx (u). Moreover, we note that
v L

(uv, h) = (v, h) <(;“;L) (Uhh)> — (u,h) <u (Uhh)> ,

for all u | d. From the above and by Theorem 3.7, we obtain

r(uo,h)  r(v.h) (u, (v%))

fup = (‘frgl,uv,h) = (o ) (u (HHT)> (3.16)
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for all u | d, where H, := (h,(¢" — 1)/m). It follows that

[fu1,va fuz,v] -

Since u — (u, k) is a multiplicative function for a fixed integer k and (uy,us) = 1, the lem

is equal to the product of the two numbers. Hence [fy, v, fusn] = furuov- O

Theorem 3.31. Assume d > 2, p{d, and v & Fr. Then, the set Ry(,d) does not have

a di-density, nor a do-density.
Proof. It suffices to show that the quotient

Ry(v,d,N) Rf(v,d,N) R_(v,d,N)
/N —  ¢N/N ¢ /N

(3.17)

converges to different limits for disjoint subsequences. First, by Theorem 3.15, we have

R (7,d, N)

g\ T d. N)| < 2w(d)+1 . +y\,—N/2
qN/N q (77 ) ) = C1 T(GN)(] 3
for all positive N =0 (mod f). By Lemma 3.11, we see that 7(e};) = Oq(N). Therefore,
the quotient of R} (v,d,N) by ¢" /N in (3.17) has limit [ if and only if 65 (v,d,N) has
limit I, as N — +o0. By (3.4), for numbers of the form N = frw(1 + nd), where n > 0

and w | d*°, we have

6;(7’d’N):M11;m Z ZW'[fu,v’fLw] =0,

v|e}er uld

which only depends on w. Secondly, note that if d > 3, then R, (v,d,N) = 0 for all
integers N = frw(1 + nd). This is either because N # f/2 (mod f) if 2| f, or because of
Lemma 3.20 otherwise. If d = 2, we may choose N to be even, so that

R (7,2,N) 1

li = ,
N—1>I-Ii-100 qN/N [L272 : FQ’QK]

if ay ¢ (K*)?, or R, (7,2,N) = 0 otherwise, by Theorem 3.25. What is important to
notice is that the quotient of R (7,2, N) by ¢~ /N has a limit L > 0 that does not depend
on w in those cases.

Now, it suffices to show that 4} # &, for a good choice of w; and w; to prove the
theorem. First, note that f, := fi1, divides f,, for all u | d. This is because Fy, , is a
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subfield of Fg, ,,. Hence

5;5 [L FLK Z ZM uv h) [fuv’fLw]

'U|e “|d

fvlfLw

By Lemma 3.30, the function u — p(u)(uv, h)[fue | frw]/u(v, h) is multiplicative and

_ 1 (v, h) (lv, W) [fr | frw]
O = TR v H<1_ l(vlh) - >

v|e}FLw ld
fv‘fLw
Let wy, we | d*° be such that wy | we and wy < wy. We have ef wr \ efLw2 since (¢" —1)p>0
is a divisibility sequence. Therefore, we have
1 (v, h) (v, h) [ fro | frws]
&b, =068 + ’ 11—t 3.18
n o (R e B

I|d

and f, | frwe. We show that the
sum on the right-hand side of the equality is p081t1ve for a good choice of wy and ws.
Assume that d > 3 and put wy = fr(h,d>)/fr, where fr := [[F : Fy], ordgg gy (q)].
Note that wy | d*° because fr, = frm for some m | d>°, by Lemma 3.11. Next, we let [y
be a prime that divides d such that Iy > 3 if d has an odd prime. Let k > v, (e} . ) be

€frw
an integer and wy = llgwl. Thus, we have e}erQ = efLwllOV where v is a power of 2, by

where Y is taken over all v | e;{L w, Such that v { e -

Lemma 3.11. Now, if we put v := (h, d®)I}, we see that v | efsz and v ¢ efLwl' It remains
to show that f, | frws. With ¢ = [Fy, : Fy], we have

iordgy(¢')(v,h)  dordgy(q')(h, d™)

fv = = - s
(lnqu((dv)X (:UJ)a v, h) (lnd‘]Fq(Cdv)>< (:u)v ha doo)

which divides iordg,(q*)(h,d>) = (h,d*)[i,ordg,(¢q)]. By Lemma 3.12 with d = d(h, d*)

and v = I}, we have

() — S A A < ¢/ 1 k>‘1
ordg,(q) = (aF — 1, d(h, d)IE) = fl5 - d(h, doo),lo ;

where f = ordg(p,qe)(q). The factor 2 that is present in some cases of Lemma 3.12 does
not appear here because ly is odd when d t 2°°, and [P(f)] = 0 when d = 2%, a > 2. It
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follows that ordg,(q) | fIE, so that

folk, if dt2°;

Fol (h,d®)i, fI§) = (h,d>) - { " .
f2%,  otherwise,

because k > 1. In both cases, we obtain f, | (h,doo)leg = frws. Therefore, the general
term in v = (h,d™)I¥ does appears in (3.18) and is equal to

lkH( flv|fLw2])

0 1jd

using that (lv, h) = (v, h) = (h,d™) for all | | d. Regardless of whether f; , | frws or not,
the general term is always positive and 5+ > 5+ Finally, let (z5)n>0 and (yn)n>0 be
defined by z, = frwi(1 + nd) and y, = frws(1 + nd) for all n > 0. Then,

Rq(%dafvn) and Rq(%dyyn)
g [Tn qv" [yn

are subsequences of (3.17) that converges to 5;1 and 5; respectively, since R, (y,d, N) =0
when d >3 and f | N. The di-density of R (v,d) does not exist because &, # 6.,

Assume that d = 2. The method is the same, but with wy = 2f1(h,2°)/fr to make
sure that w; is even. We let w; = 2kw1, where k£ > vg(e};wl). As in the d > 3 case, we
see that v = (h,2%°)2% divides e}erQ, but not E?Lwl' We use that f, | (h,2°) - [i, orda,(q)]
again to show that f, | frws. By Lemma 3.12, we have

2k+v2(h)+lcf
(qcf —1, 2k+v2(h)+1)’

orday(q) =

where ¢ = 1+ [¢ = 3 (mod 4)]. We see that orda,(q) | 2871 f, so that f, divides
(h,2%) - [i, 2771 f] = (h,2) - 2°F1 .

Thus, we obtain f, | 2571 f1(h,2°°) = frws. The rest of the proof follows the same path
as the case d > 3, with the same subsequences. Note that this time, the quotient in (3.17)
converges to 5;;1 + L and 53;2 + L respectively, which are distinct. O
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Chapter 4
Explicit results for the d3-density

In this chapter, we compute closed-form formulas for the ds-densities in the non-trivial
cases. Indeed, we obtained formulas (3.5) and (3.9) that involve non-trivial boolean func-
tions and an infinite series over divisors of d*°. Our goal is to remove both dependencies
when possible.

Recall that v = ,u:yg for some p € Fr, and 49 € L, 4 is monic in Ly, and is not a power

in L. This makes h > 1 maximal. When L/K is geometric, we have

Npyx(v) = 1’ Ny (o) = 1.

Hence p% = A for some \ € F, and v = + AP/ (Z’h)’y{)‘ . For simplification, we would prefer

~ to be an h-th power in L. Therefore, we define the boolean function
b(h) = [\"@h) & (FX)" and — A1) & (X)),

If b(h) = 0, then v or —v is an h-th power. The following theorem allows us to switch
between « and —v with no loss of generality:
Theorem 4.1. For every d > 2, we have

5Q(—’Y’ 2d) + 511(_77 d/2) - 5q(—7,d)a Zf2||d,

dq(7,d) = ‘
dq(—,d), otherwise.

Proof. By Lemmas 2.5 and 2.9, we have
ordy(—v)/2, if 24 pu(P);
pu(P) = { 2ordy (=), if py(P) =2 (mod 4);
ordy (—7), if 4| pu(P).
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First, we have py(P) = ordy(—v) when 4 | d and d | py(P). Moreover, when d is odd,
we have d | py(P) if and only if d | ordy(—7). Hence Ry(v,d) = Ry(—7,d) and the result
follows. Finally, when 2||d, the set Ry(7,d) is the union of the sets

Ay ={P € Py :PtaA and 2d | py(P)},

and Ay = Ry(v,d) \ A1. Any P € A; satisfies 4 | py(P), so that py(P) = ordy(—v).
Hence, we have A; = Ry(—~,2d). For Ag, we see that any P in this set satisfies

d|pu(P) and 2dfpy(P).
It follows that py(P) = 2ordy(—v), and P € Ay if and only if
d|2ordpy(—y) and dfordy(—v).

We find that Ay = Ry(—7,d/2)\ Ry(—~,d). The result follows by taking the ds-density of

these sets, which exists by our results in Sections 3.2 and 3.3. O

¢
We saw in Remark 2.10, that —v is associated with the Lucas sequence U(A, —a2A).
Thus, it makes sense to consider d4(—7,d) and to use Theorem 4.1.
Next, we note that Corollary 3.26 actually provides density results for many other

cases. Indeed, we have the following:
Theorem 4.2. If g=1 (mod 4), 2| d, and ay € (K*)?, then o, (v,d) = 0.

Proof. Since d | py(P) and 2 | d, we see that R (v,d) is a subset of R (v,2). Call z a

square root of as in K. By Corollary 3.26, we have

1 |09, exists]

— < 5 - __ Fsl Pl

Since ag € (KX)2, we have Lg o = L. Moreover, by Theorem 3.25, the automorphism o5 1
exists if and only if o7(7"/2) = v7Y/2. We have NL/K(’yl/Q) = Np/k(a/z) = ag/x? = 1.
Thus, we see that 021 exists and J, (v,d) < 0. O

For the rest of this chapter, we assume that as & (K*)? when ¢ =1 (mod 4) and 2 | d.
For convenience, we do not state this assumption in the many results of this chapter that
are related to the study of R, (v,d). However, it will be restated at the beginning of the
concerned sections, and when we summarise our results.

In the first section, we prove three important preliminary results, namely, Lemma 4.4,

Lemma 4.5 and Lemma 4.6. The first one provides our main tool for the cases b(h) = 1 and
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L=Fg (T'). The second and third are about expressing certain sums into Euler products.
This simplifies many calculations for the obtention of the closed-form formulas.

In our second section, we find necessary and sufficient conditions for the automorphisms
oy, defined in Section 3.3 to exist.

As a consequence of Theorem 4.1, we study the case b(h) = 0 under the assumption
that v is an h-th power in Section 4.3. To prevent repetition, we treat the case L = K in
the same section. However, we are not able to obtain a closed-form formula in all cases
when L = K, while no case is missing from the case b(h) = 0. Recall that R (v, d) is not
empty only if d { ¢" 4+ 1 for some k > 1. Thus, we assume the existence of such integer k
throughout this chapter. Under this assumption, Lemma 3.20 shows that only the cases
d=2,0r2| fand (d,g—1) <2 need to be treated.

In Section 4.4, we study the case b(h) = 1. We add constants to L and K by adjoining
the square root of A. This allows for v to be an h-th power in F 2 L. Then, we are able to
link §y2 (7, d) to d4(7, d) using a result of Section 4.3. A few cases remain to obtain the full
density, but they are free of most difficulties.

We look at the case L = Fp2(T') in Section 4.5. As in the case b(h) = 1, there is a
connection between d,2(7y,d) and 6,(7,d) that leaves only a few simple cases to work on.
We are able to obtain an explicit formula for all 7, except for some very specific cases.

In the last section, we provide some algorithms to compute every constant that appear
in the closed-form formulas. For instance, the first algorithm allows us to compute the
constant h associated to «y for any given a1, as € A under our main hypotheses. Moreover,

we compute b(h) and other constants yet to be defined.

4.1 Preliminary results

We first prove a result that will link Ry(vy,d, N) to Rpe(v,d, N) for all N > 1. This will
be useful to write the dz-density of R,(v,d) in terms of d3(R,2(7,d)). Secondly, we prove

a few formulas on sums and Euler products.
Lemma 4.3. Let P € P and p | P be a prime in L. Then py(P) = pu(p).

Proof. There is nothing to do if P is inert in L. Assume that P = por(p), where o, is the
non-trivial automorphism of L/K. If P | U, for some n > 2, then p | U, as well. Hence,
we have py(p) | pu(P). For the converse, if p divides some Uy, then o (p) must divide U,
because U,, € K. It follows that P | U, and py(P) = py(p). O

Lemma 4.4. For all N > 1, we have

Rq(’y’daN)a Zf2+N,

}zq2 (77 dv N) = 2Rq(% da 2N) +
0, if 2| N.
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Proof. Let P € Py be counted by R4(7y,d,2N). Since deg(P) = 2N is even, we know
from [29, Proposition 8.13| that P splits completely in F2(T'). Let p be a prime lying
above P in F (7). By Lemma 4.3 both p and o (p) are counted by R;é (v,d,N). Hence

Rp(v,d,N) = 2Ry(v,d,2N) + S(N),

where S(IN) denotes the number of primes p counted by R2(7,d, N) such that P =pN K
is inert in F2(7T"). By [29, Proposition 8.13], and since deg(P) = deg(p), we see that S(N)
is zero when 2 | N. When 2 { N, we have S(IN) = Ry(7,d, N) by Lemma 4.3 again. O

In the next lemma, we find a product formula for a sum which is a variation of a series
computed by Sanna in the proof of [30, Lemma 5.4], which was already a generalisation of
result of Moree, [21, Lemma 4|. We follow their method.

Lemma 4.5. Let d,e, h,m > 1 be integers and define the sum

Sd,en(m Z ZM uvh

v|(m,d*>®) u|d
elv

Then, we have

(h, d) < zvz<[e7<h,d°°>1>> .
e ey L\ V- e | il (o dX)] | (m,d);
Sanim) = | Tt L1~

0, otherwise.

Proof. Clearly, when e { (m,d"), the outer sum is an empty sum, thus Sg.p(m) = 0.

Hence, we assume e | (m,d>). The function defined by

oy ) ()

is multiplicative. We use the Euler product formula on Sg. ,(m) to obtain

(v, h) w(u)(uv, h (v, h) (lv,h)
Sueam) = 3 R STHGI — S R (1)
v|(m‘,d°°) uld v|(m‘,d°°) lld ’

We see that the product is non-zero if and only if (h,d*) | v. Indeed, if I | (h,d*) is such
that v;(v) < vi(h), then v(lv) < v(h) and (lv,h) = l(v,h). We see that Sg,p(m) = 0 for
all m > 1 such that (h,d>) t m. Therefore, when both e and (h,d>) divide (m,d*), that



51

is, when eq = [e, (b, d™)] | (m, d*), we have

_ p(d) (v,h)  p(d)(h,d>) 1
Saen(m) === > v de > o’
vlmd=) ol (m,d=)
ep|v

where we used that (v, h) = (h,d>) because ey | v. We apply the Euler product one last

time to the sum to obtain

1 v (m/eo) 1 (1 _ lvl(m/eo)1>
eozvljm ! egl|gdW) ; r eolgdm) 1-17 ‘

Since (m,d™) /ey divides d*°, we may replace the index of the product by [ | d. Indeed,
the only instance it could be a problem is when [ | d, but [ t (m,d>)/ey. However, we
see that the general term in the product is equal to 1 in that case. The result follows by
taking (1 —17')~! out of the product, which yields a factor of d/¢(d). O

Lemma 4.6. Let f = ordg(p, gy (q). We have

o) (e
Z Z u(qf — 1 uoo)u(u, u®)  ¢(d) H (1 (1+ 1)lvl(qf—1)> '

v|d> uld I|d

Proof. Using (dh,u*) < (qf — 1,u®), we obtain the inequality

22 |

v|d>® uld

)(dh,u 7(d)p(d)
1u°° Vu°°’ ZZ ’

v|d>® uld

which shows that the series is absolutely convergent. We may now interchange the sum

symbols in the expression. We obtain

p(w)(dh, u™) 1
Z u(gf — 1 uoo)l%o’/(’/auoo).

uld

Let S(u) denote the inner series. The function v — v(v,u®) is multiplicative, thus

- Tl(Srh) M)

lld ~r>0
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Separating the primes [ | u from those that do not divide u, we obtain

S(u) = H (l_ll) p (f:) - Ed[ (l—ll> 11 (z . 1> - v
lu

where 1 is the Dedekind psi function. Finally, going back to D(d), the result follows by

using the Euler product formula on the remaining sum. O

4.2 Existence of the good automorphisms

In this section, we assume [L : K] = 2. We give necessary and sufficient conditions for the
existence of o € Gal(Ly, 4/K) such that o(a) = b, 0((,) = ¢, ', and o(y"/4) = ~7Y4 The
search for such conditions is justified by Theorems 3.22 and Lemma 3.28, which correlate
these automorphisms to the primes counted by R, (v,d, N). We construct o step by step
by extending an automorphism of K((,) to L((,), and then to L, 4.

Lemma 4.7. Assume n > 3. Then, there exists o € Gal(L((,)/K) such that o(a) = b
and o(¢,) = ¢, ' if and only if

(1) (n,q—1) <2;

(2) 2| ord,(q), if L/K is geometric;

(3) 2|lord,(q), if L =TFpe(T).
Proof. Let us first construct og € Gal(K((,)/K) such that 0¢(¢,) = ¢, '. The minimal

polynomial of ¢, over F, is given by

ordy,(g)—1

e,(X)= ] (x-¢).

=0

For og to send ¢, to ¢, !, we need that ¢;! = Cﬁbi for some 0 < i < ord,(¢q) — 1. Following
the proof of Lemma 3.20, we see that n | ¢ + 1 holds if and only if (n,q — 1) < 2, in which
case ordy,(q) = 2. If L/K is geometric, then f(X) = X2 — a; X 4 ay remains the minimal
polynomial of a over K((,). Therefore, because L((,) = K((,)/(f(X)), we can extend og
in exactly two ways to o € Gal(L((,)/K) such that o|g(c,) = 0o and such that o sends a
to one of the root of oo f = f. It suffices to choose the root b. If L = F2(T'), we proved
that 2 | ord,(q), so L(¢,) = K({,). Therefore, we see that og is the right automorphism
if and only if og|;, # id. We write M = L((,) and let H < Gal(M/K) be the subgroup
generated by og. It is easy to see that the field

M ={xeM:VoeHox)=z}={xeM:oiz) =z}
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is equal to K (C,+¢, 1Y), since 00(Cn +¢,Y) = Gu+¢, " and because X% — (¢, + ¢, )X + 1 is
the minimal polynomial of ¢,, over M. Hence oolr, #id if and only if L ¢ M H_ We are
dealing with constant field extensions of K, thus this is equivalent to Fy> & Fq(Cn + ¢ 1),
which happens if and only if [M : K] = ord,(¢)/2 is odd. O

Note that the condition (n,q — 1) < 2 makes sense as R, (7,d) is empty for all d > 3
such that (d,q — 1) <2 by Lemma 3.20.

Theorem 4.8. Let n > 3. There exists 0 € Gal(Ly, 4/K) such that o(a) = b, a(¢,) = ¢, L,
and o (v = Y4 if and only if

(1) (n,q—1) <2

(2) 2 |ord,(q) if L/K is geometric;

(3) 2|lordn(q), if L = Fg2(T);

(4) and oo(y"/ (@M = 47V/@R) where o is defined in Lemma 4.7.

Proof. By Lemma 4.7, there exists o9 € Gal(L((,)/K) satistfying the first two properties
if and only if (1) and one of (2) and (3) hold. It suffices to prove that op can be extended
to the right automorphism if and only if (4) holds. Put dy = d/(d, h). We claim that

FX) = X —

is the minimal polynomial of v/¢ over L(¢y), where w is a (d, h)-th root of y in L((,). First,
since y = M%L, we have w = Ml/(d’h)fygo, where hg = h/(d, h). Moreover, by [29, Proposition
8.13|, we know that oo is inert and has degree 1 in M := L((,). Therefore, the completion
of M with respect to vy is given by Mo, = Fr((,)((m)), where 7 is a uniformizer of co.
It follows that & = %LO € L because 9 € Lo C My. We are now ready to prove the
irreducibility of f(X). Let [ | dy be a prime, and assume that w € (M*)'. Then, we have
@ € (M) as well. By Theorem 3.3, since L(@'/!) is a constant field extension of L, we
may write @ = uz! for some u € Fy, and € L. Hence %lo = #!, and by the maximality of
h, we obtain I | hg. This contradicts (dy, hg) = 1. Now, if w = —4y* for some y € L((,),
it follows that @ is a square in L using the same method. This contradicts the above and,
by Theorem 3.4, the polynomial f(X) is irreducible over Fr((,). Finally, since we have
L,q = L(¢)[X]/(f(X)), we can extend og to the right automorphism o if and only if
Y4 s a root of (oo f)(X) = X% — gg(w), that is, if and only if og(w) = w™t. O

We will later see that conditions (2) and (3) are easily satisfied in our calculations.
However, the last condition is too weak at the moment to be used efficiently, as there

is a dependence on n and d. In most cases, we will be able to reduce it to a simple



54

condition involving o, and the divisibility of d by a power of 2. Let hy = (h,2%). The
next proposition deals with the case L/K geometric and ¢ # 1 (mod 4). The following

lemma is useful to prove the proposition and other later results when ¢ = 1 (mod 4):

Lemma 4.9. Assume that L/K is geometric. Then, we have oo(y*/ (@) = =1/ (dh) f
and only if ao(’yl/o‘) =~V where a = (d,h,2°) and oq is defined in Lemma 4.7.

Proof. Let D = (d,h), so that a = (D,2%). One way is trivial by taking the (D/a)-th
power of both sides of o (v'/") = v~/P. Assume that oo(7"/*) = v~ /* and define

L, ifb(h) =0;
FpL, ifb(h)=1.

L' =

Then, we have oo(v"/P) = o1, (/P) = C]k)/a’y_l/D for some k € Z and (p/, € L', where
op = oo|r. Note that we know that 71/D € L' because it has the form v = )\h/(2’h)%L.

Taking the a-th power in the equality, we see that

a/D) —a/D

ar(v*'P) = ¢ P,

where 'yO‘/D now belongs to L. But (D/a,q — 1) = 1 by hypothesis, so Cg’;a = 1. Now,

since « and D/« are coprime, we have ¢ E Ja = 1 as well, and the claim follows. O

Proposition 4.10. Assume L/K geometric, b(h) =0, and ¢ Z1 (mod 4). Then, condi-
tion (4) of Theorem 4.8 is equivalent to the following:

(1) hytd; or
(2) hi|d and aL(yl/hl) — U

Proof. Let a = (d,h,2°°). By Lemma 4.9, we can replace condition (4) of Theorem 4.8
with oo(y"/®) = 7=, It suffices to show that the equality o (v/*) = v~/ holds if

1/a

hitd. Since oo(y) = v~ ! and 4/ € L, we have

oo(v/?%) = o (1) = ¢l

for some i € Z and (o € L. We have (o, ¢— 1) < 2, so that ¢!, = £1. Squaring both sides,
we obtain og(y"/®) =y~ O

One may ask where the assumption ¢ # 1 (mod 4) was used. It turns out that the
case ¢ =1 (mod 4) could be treated similarly, but we decided to hold on to that for now.
In the following, we will show that even simpler conditions can be found under specific

assumptions made in the various sections.
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4.3 The case L =K or b(h) =0

Throughout this section, we assume that f,, = ordg,(¢q) for all u | d and v | d*°. Note
that this is always the case when L/K is geometric and b(h) = 0. Indeed, since 7 is an

h-th power in L, so is its sign p in [F,. Therefore, we have

indp, (¢ ,)* (n) = (qorddv(q) —1,h)- indg, (¢4,) (€),
where €" = u. Since (uv, h) divides the right-hand side, and by Theorem 3.7, we obtain

ordgy, (q)(uv, h)
(indp, (¢, )% (1), uv, h)

fu,v = = orddv(q).

However, this may not always be the case when L = K. We provide sufficient condition for
our assumption to hold at the end of the subsection. We first prove a closed-form formula
for 5;‘(7, d), which holds if L/K is geometric and b(h) = 0, or L = K. Then, we find a
closed-form formula for 6, (v,d) in the geometric case, as R, (v,d) is empty if L = K.

4.3.1 The formula for ¢, (v, d)

Let us now define 1 : Z2 ) — Zso by n(m,n) = gva(a/+1)-1 i P(f) is true and 2 | (m,n),
and by n(m,n) = 1 otherwise. Here, f = ordgp,qey(q). Note that m — n(m,n) is a

multiplicative function for all n > 1.

Lemma 4.11. Assume fy, = ordg,(q) for allu | d and v | d>*. For each w | d>, we have

(), ) o B
uzw u(q) — 1,u%®) (v, u)n(v,u)’ if fw= fv, for some v | d;

0, otherwise.

If fw = fv, we may denote 5} by §(v) when it is written in the above form to make the

dependence on v clearer.

Proof. Since f,, = ordg,(q), and because v | e;[w if and only if ordg,(q) | fw, we obtain
from (3.4) that 6, becomes

1 p(u)(uv, h) Sa1.n(€f,)
5$:[L:K]ZZ w [L:Kf] ’

v\e}rw uld
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where the sum Sd,lyh(e}rw) was defined in Lemma 4.5. We obtain

jvi(dh)

: 00 + .
1 H<1_Z’L)l(qf“)1)+1>’ lf(h,d )|€fw7

I|d

0, otherwise,

from Lemma 4.5. However, we have (h,d™) | e;fw if and only if f | fw. By Lemma 3.12, we
have f = fk for some k | d°, and it follows that fw = fv for some v | d°. The function

pu(u)(dh, u>)
u(gf” — 1,u>)

is multiplicative and, by the Euler product formula, we have
() (dh, u™ [vr(dh)
= 1 _ = 6 .
Z qf” —1 u°°) %_dl ( Jouafv—1)+1 ¥)

We now apply Lemma 3.11 to (¢’ f —1,u) in the denominator of the general term of the
sum, which is allowed since u | ¢ 7 _1. We obtain (q v_1u ) =(q T_1,u ) (v, u>)n(v,u),
and the result follows. O

Theorem 4.12. Assume that f,, = ordg,(q) for allu|d and v | d>. Then, we have

v (dh) 1=2]-[P(f)]
o) = L (1= ety
a fIL : K] (14 1)lvle!=1)

I|d

where C =3 .47 4+ 2*v2(qf7+1)71'

Proof. By Lemma 4.11, we may only consider indices w | d*° that satisfy fw = fv, v | d*,

in the expression of 5; (,d). We obtain

(d)
=20 S g —de}
d OO

Kﬁ‘g

If 2t d or [P(f)] = 0, then (v, u) is equal to 1. We obtain
04 (v,d) =

and the result follows by Lemma 4.6, in which D(d) was defined. If 2 | d and [P(f)] = 1,

then we may interchange the series and the sum in 6(), by the argument used in the proof
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of Lemma 4.6. We have

(w)(dh, u™) 1
O (7,d) = df[L K Z qf—l u®) ,,Ed;o v(v,ue)n(v, u)

Let S(d,u) denote the inner series. We know that v — v(v, u*)n(v,u) is multiplicative.
Thus, d — S(d, u) is also multiplicative. Moreover, we have n(v,u) = n(rad(v), u), where
rad is the radical of an integer function. Writing d’ = d/(d, 2°°), we obtain

1
S d, _ S d/, 1 ’
(d,w) (d', u) < + ; 2r(1+2[ul)p(2, u))

Following the proof of Lemma 4.6, we show that S(d',u) = S(d',u') = d'u’/o(d' ) (u'). By

the properties of the ¢ and ¥ functions, we have

(2(u] 2]u]
S(d, u) = 3du B 1 B duC
3 )-1

dp(d)ip(u) - 9va(a/ +1)— —e(d)i(u)’

Replacing S(d, u) by its new value in 6, (v,d), we find that

() (dh, u>®) ORI

51 (v, ;
O d) = D) (gf — 1,u™)

and the result follows by the Euler product formula. O

Note that Theorem 4.12 matches [2, Theorem 3.3] and [3, Theorem 11| that Ballot
proved in the case ¥ =T and, respectively, d = 2 and d an odd prime.

Example 4.13. Leta; =T, a3 =1, ¢ =3, and d = 20. We have h =2 and f = 4. By
Theorem 4.12, the density of R3 (7, 20) is equal to

1 1\? 25
5;(7,20):8-<1—6> 288—0086805

We made the following computation:

8
1 R
= g ~ (0.085493
8 — 3"/n ’

which matches the value of 5;'(7, 20). Moreover, since 20 1 3% 41 for every k > 1, it follows
from Section 3.8 that R5 (v,20) is empty. Hence d3(7,20) = 25/288.

We successfully proved a closed-form formula for 6;(7, d). However, the assumption

that the degree of Fy, ., over Fy is equal to ordg,(q) for all v | d* and w | d was used.
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We have seen that it always holds when L/K has degree two and b(h) = 0. The following

proposition provides sufficient conditions for this equality to hold.

Proposition 4.14. Assume L = K, and either (h,d) =1 or (ordF; (1),d) = 1. Then, we
have fy ., = orday(q) for allu | d and v | d*.

Proof. By Theorem 3.7, we have

ordgy, (q)(uv, h)
(indg, (¢, > (1), wv, h)”

fu,v = [de,uv : Fq] =

If (d,h) = 1, then (uv,h) = 1 and the result follows. If (orqux (1),d) = 1, then the order
of pin Fy(C4y)™ is equal to ordpx (). Hence

qordav(a) — 1

oy (4.1)

inqu(Cdv)x (M) =
We see in (4.1) that wv divides indg,¢,,)x (1), Indeed, uv | dv and (orqux (u),uv) = 1
imply that ordF; (w) - uv | qorddv(Q) _1. 0

However, Proposition 4.14 is not enough to cover all cases. For instance, it does not

give any information about the density when L = K and (orqux (1),d,h) > 1

Example 4.15. Let a1 = 2T° +1, ay = 2T, and ¢ = 5. We have v = 212, and it follows
that p = 2 and h = 2. Since ordF; (2) = 4, any even d satisfies (ord]F; (n),d,h) > 1
Applying the formula of Theorem 4.12 with d = 2 would give a d3-density of 2/3. However,

our computations show that

6
1 5(272,2,n)
= ~ 0.854677
6 z:: 57 /n ’

which deviates from the expected value of 2/3. For d = 21, the formula of Theorem 4.12
applies, giving 05 (7,21) = 77/576 = 0.1336805. We have
1 R5(2772,21,n)
- ~ 0.128165
6 ; 57 /n ’

which is relatively close to the value of §3 (v,21).

More numerical comparisons can be found in Appendix A.1. We experimented on
various other sequences in the case b(h) = 0. See Tables A.1, A.2, A.3, and A 4.



99

4.3.2 The density ¢, (v,d) when 2| f and (d,q —1) <2

From now on, we assume that L # K and b(h) = 0. Recall our assumption that ay is not
a square when ¢ =1 (mod 4) and 2 | d. The closed-form formula for . (v, d) is obtained

using the formula for ¢§,, found in Section 3.3, i.e.,

Z Zu )(uv, h) Bu,v),

|f /2 uld

where B(u,v) = [0y, exists] - [fw = fu,» (mod 2f,,)]. In our case, we have [L : K| = 2
and fy,, = ordg,(q). The condition that fw = f,, (mod 2f,,) becomes equivalent to v
dividing le , but not e . Since (d,q — 1) < 2, this is equivalent to v | e, fwya- Lherefore,

we may rewrite d,, as

h)
Z Z plu 2 (uo, - [ou,p exists].
uv

'u|efw/2 uld

This sum is close to Sd,l,h(e;w/Q)' To simplify it, we need to discuss the existence of the
O,y automorphism.

By Theorem 4.8 and Proposition 4.10, we see that o, , always exists in even character-
istic because it is assumed that p { d. Indeed, condition (1) of Proposition 4.10 is always
satisfied for hy > 2. Otherwise, hy = 1 and o7, (v'/") = v~Y/™ trivially holds. Let

Q(n) = [hy fn] + [h1 | n and op(y!/") = 571/, (4.2)

for all n > 1. We saw the importance of this boolean function in Proposition 4.10. For
instance, we have Q(uv) = 1 if and only if oy, exists, when ¢ = 3 (mod 4). The existence

of oy, remains to be determined when ¢ =1 (mod 4). We have the following:

Lemma 4.16. Assume that g =1 (mod 4). Then, oy, ezists if and only if (dv,q—1) < 2
and 2t (uv, h).

Proof. We only need to work on the last condition of Theorem 4.8. Note that we already
have 2 | ordg,(q) because f is even. Moreover, the first condition (dv,q — 1) < 2 implies
that va(dv) < 1 and ve(uv) < 1. If o := (uv, h,2°°) = 1, then clearly oo(y/?) = 471/
and condition (4) of Theorem 4.8 holds by Lemma 4.9. If a = 2, we have 2 | h, which
is equivalent to as being a square in L. This is because v = a? /a9 is an h-th power in L
when b(h) = 0. We easily see that ap € (L*)? if and only if one of as and ag/A is the

square of an element in K, say 2. In the latter case, we have

70(1%) = 01(0"%) = o1(a/aVA) = ~bjoVA = =2
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Thus, 0y, does not exist. The case ag € (K X)2 can not happen by our assumption at the

beginning of Subsection 4.3.2. O

Lemma 4.17. Let d = d/(d,2°°) and w | d'*°. Then 26,, = Sd/717h(e;w/2) -Co(d, h), where

1, if21d, orq=1 (mod 4) and 2 | h;
Co(d: 1) =1 if 2| (d,h), ¢ =3 (mod 4) and hy Jf26f/2,
2v2(dh)Q |
T qua(gf 1)1 otherwise,

and where Q = [op,(y"/"1) = 47 1/M).

Proof. Let w | d’>°. Applying Proposition 4.10 and Lemma 4.16 to (3.8) yields

Q(uv), if =3 (mod 4);

h)
ZZM Q;ﬁ) L, if 2| g;

uld [21 (uv,h)], ifg=1 (mod 4).

U‘efw/z

Note that we should have [(dv,q — 1) < 2] - [2 t (uv,h)] for ¢ = 1 (mod 4) in the above.
However, since dv | q/"/? + 1, the condition (dv,q — 1) < 2 is necessarily satisfied. If
21 (d, h), then it follows directly that 25, = del’h(e;wm). When 2 | d and 2 { h, we write

B B 2v2(dh)
2611] = Sd/717h<ef’w/2) 1 — m 5

since (h,d>) is odd, which allows us to take out the | = 2 factor out with no other
assumption. Note also that UQ((B;w/Q) = 1}2(6;/2) since 2 1 w. For the rest of the proof, we
assume 2 | (d, h).

Assume that ¢ =1 (mod 4). Then, we see that v is odd, so that 2 | (uv, h) if and only
if 2| (u,h). We obtain [2 1 (uv,h)] =1 — [2 | u], and the part in the expression of d,, that

corresponds to [2 | u] is equal to

w(w)(uv, h) p(u’)(u'v, h
¥yt g g el
vlery ;ﬂ vleg,, W'l
We used va(uv) = 1, so that (uv, h) = 2(u'v, h), where v’ = u/(u,2°). Thus, since e,

is odd, i.e., e;w/z | >, and by Lemma 4.5, we may write

fw/2

26, = Sd,l,h(ejjw/g) + Sd’,Lh(e;w/g)'
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Moreover, since 2 | (d, h), the sum Sd,1,h(€;w/2) must be equal to zero because hy 1 € o
Hence, we obtain d,, = Sd/717h(e;w/2)/2.
Assume that ¢ = 3 (mod 4). We write

_ uvh
5o = Z ZM ( )’

v\ef /2

and, given v | e ., let S(v) be the inner sum in the above expression. If vy(h) > v(2v),

fw/2°
then Q(uv) =1 for all u | d, and thus

0 =I1(- i) =

I|d

because the [ = 2 factor is equal to zero since (2v,h) = 2(v,h). It follows that &, = 0
when hy 1 2e},,/5- We can replace e;fwm by €}, since w is odd and Ug(e;wﬂ) = 02(6;/2)
using Lemma 3.11. Assume that hq | 26;/2. With the convention 0° = 1, we have

- h Q[2|u
2611} = QSd,hl, fw/2 Z Z ,u U/U )
uld

vlesu 2
where Z/ means that indices v are taken with 2-adic valuation equal to va(h)—1. Here, we
used Q(uv) = Q for all u | d when h; | v. This yields the left summand in the above. For
the sum on the right, we call it Sp, we used Q(v) = 1 and Q(2v) = Q when v2(2v) = va(h).

We now work on Sy. We have

so= 3 el Z# uvhgmu -y s

v\e;w/Q

v|efw/2

The general term of S(v) defines a multiplicative function in w. Therefore, the Mdbius

sum S(v) seen as a function d — S(v) := S(v,d) is also multiplicative. We obtain

21
S(0,d) = S(v, d)S(v,22®) = (v, a) 3 MU0 h Q — S(v,d)(1 - Q),

ul2

where we used (2v,h) = 2(v,h) in the last equality. Replacing S(v) in the expression of
So, and using (uv, k) = 221 (ua’, h), where o' = v/(v,2%), we find that

So=(1-0 ZZM )(uv, h) Zz,u uvh

U
|f /2 uld |f /2
2tv
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We obtain 2§, = QSd7h17h(e;w/2) +(1— Q)Sd/J,h(eJZw/z). Since hy | (h,d>), we see using
the product form of Sd,hhh(e;w/Q) of Lemma 4.5 that Sd,hl,h(efw/g) = Sd,lﬁ(e;w/g). Hence,

we can factor the products in the following way:

B Q2 (dh) B B
200 =\ 2\~ quarrmm | Pl eppl +1=Q ) Sarinlepys)-

A quick computation shows that the first factor is equal to 1 — 2v2(@h) Q/ gua(a”/?+1)+1

whether hy divides €}y Or mot. Finally, we use vg(qfw/2 +1) = vg(qf/2 + 1) by Lemma

2
3.11, since 2 { w. O

Lemma 4.18. Let fo = ordyp,g(q) and assume [P(f)] =0. We have

h, 2%
i W2 2 a
f=fo-{ (ef:m2%)
1, if24d
Proof. By Lemma 3.12, we have
fod(h,d>)

f=

(g0 —1,d(h,d>))’

We work on the denominator. If d is odd, then d(h,d™) divides ¢/® — 1 and the result
follows. If 2 | d, then

Jo 1
fo _ 00)) ooy (477 — L oo\ _ 100 [+ 0
(q 1,d(h,d>)) = d(h,d) <d(h,d’°°)’h’2 > d(h,d )(efo,h,Q ).

Since va(f) = v2(fo) by Lemma 3.12, we can replace e;[O by e;{. O

Theorem 4.19. If ¢ = 1 (mod 4), 2 | d and az is a square in K, then o, (v,d) = 0.

Otherwise, we have

_ Cl(d, h) [vi(dh)
5 d) = 200 | | 1
q (’Y, ) 2f ( (l + 1)lvz(qf—1) ’

I|d’
where, with the notation of Lemma 4.17, we define

(h,2%)
Cl(d, h) = Co(d, h) - { (€f,1,2%)
1, if21d.

if 2| d;

Proof. The first case is given by Theorem 4.2. Otherwise, we let fo = ordg,a~)(q). By
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Lemmas 4.17 and 4.5, we have

fw/2 o)’ J;w/Q;

0, otherwise,

where we expanded the product in Sd’,e,h(e;w /2) into a Md&bius sum. On the one hand, we
see that (h,d"™) | €2 if and only if fw = fy (mod 2fp). By Lemma 3.12, the latter is

equivalent to fw = fov for some v | d>°. On the other hand, we have

(@72 + 1,0%°) = (¢ = 1,u%) = (¢ = 1,u) (v, u™),

where we used 2 1 u for the first equality above, and Lemmas 3.11 and 4.18 for the second

equality. Therefore, we obtain

g = Coldh) s~ (@) Cold. 130

W 2 u(qf— 1, u>®) (v, u®>) o 2

9

uld’

if fw = fov for some v | d'*°. By (3.9), we now have

B 20(d 5= Cold, h)p(d 5(v
5 (o) = e(d) 3  _ 0500[2,);?()2 ()

V|d/00

Expanding §(v), the series becomes D(d’), defined in Lemma 4.6. This yields

Gl (e
(Sq ('Ya d) = fO[Q,d] go(d’) g (1 (l n 1)lvz(qf—1)> .

Finally, we note that d'/o(d") = d/(2,d)p(d) and that d/[2,d](2,d) = 1/2, so that

Cﬂ(d’ h)@(d) . d _ CD(d)h)
fo[2,d] o(d) 2fo

The result follows by Lemma 4.18, which applies because 2 | f ensures that [P(f)] =0. O

Example 4.20. Leta; = ay = T>+1, ¢ =3, andd = 4. Then, we have h =2, f = f =2,
and Q = 0. By Theorem /.19, we have

Ch(4,2) 1
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Computations show that

12 _
1 4
LB 00d) g og3sss,
12 3"/n
n=1

which is relatively close to the expected value.

4.3.3 When d =2

The density 6, (7,2) has already been explicited in Corollary 3.26 when ¢ =1 (mod 4). In
this section, we focus on the case ¢ =3 (mod 4), where we have a closed-form formula by
Theorem 3.29. However, the presence of the boolean B(27,2") = [0y, 5 exists and 2|| a5 2]

can make its computation difficult. In this section, we mostly work on the term

21: (_1)j(2i+j7h) -B(Qj,2i), (4.3)

2t+j

that appears in the expression of 4, (7,2). The calculations are similar to those of the

previous section for the case ¢ =3 (mod 4). We may skip a few details.

Theorem 4.21. Assume ¢ =3 (mod 4). We have 6, (7,2) = do+ 01, where dg was defined
in Theorem 3.29,

1 0, if h1 )[261_;
01 = 1 Qhy

T Su(rD)’ otherwise,

and Q = (o, (/M) = 571/M).

Proof. Our initial goal is to simplify B(Qj, Qi) as much as can be. Applying Lemma 3.12
to foi 9i = ordgi+1(q), we find that fy; o1 = 2 for all 1 <14 < wa(ey ). Hence

B(27,2) = [095 9i exists],

for i > 1, or (4,5) = (0,1). By Proposition 4.10, we obtain B(27,2") = Q(2*7). Note that
we recover the case B(1,1) = 1, since Q(1) = 1. We may rewrite (4.3) as

B ) (v, 1) Q(u)
oo Yy M QL)
vle] ul2
If hy 1 2v, then Q(uv) = 1 for all u | 2, and the inner sum in ¢ is equal to 0. Therefore,
the outer sum in the above expression of ¢ can be taken over v | e] such that h; | 2v. In

particular, we see that 6 = Sy (€] ) = 0 if hq { 2e7, by Lemma 4.5. We assume hq | 2e]
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and separate § into two sums

5= Y0 32 MO IS5, = 9 /2) - Q).

uv

vley ul2
hilv

Note that S can be zero if hy { e . Moreover, Sy corresponds to the general term of ¢
when v = hy /2. We see that So = 1 — Q by the definition of Q(n), and that Q(uv) = Q

for all values of v and v in S;. Hence
6="S2p,n(er)+1—-Q.

We apply Lemma 4.5 and see that the formulas for h; | e; and hy { e] coincide. ]
Example 4.22. Let a1 =T?+1, a5 =T +1 and g =3. We have h =1, thus Q =1. By
Theorem 4.21, we have

1 1N 1.3 5
55 (1,2) =do+ - [1—=) =<+~ =2 =0.3125.
3 (1nY =do+yg < 4> g1 16 U

We found 6o = 1/8 from Theorem 3.29 because Lg o = L(y"?) is a geometric extension of
degree 4 of K. Numerically, we obtain
10 -
1 R3 (’77 2)

— ——= =~ (.323133.
10 3"/n
n=1

The approximated value is relatively close to 5/16.

Note that the approximation error can be large, as we see in the above example or in
Example 4.20. This is due to the exponential growth of the number of prime polynomials

over F,, which restricts computations to the first few degrees n.

4.4 The case b(h) =1

We assume L/K is geometric of degree two and b(h) = 1. For consistency with the other
sections, and because Theorem 4.1 allows us to switch v to —vy, we assume v = A/ Z%L.

Before computing formulas for the densities, we note the following:
Lemma 4.23. Ifb(h) =1, then 2 | h and ¢ =1 (mod 4).

Proof. We prove the lemma by its contraposition. Clearly, 2 1 h implies that M/ @R) — \h
If 2 | ¢, then every element of F, is a power of 2, thus M2 e (qu)h. If ¢ = 3 (mod 4),

then for every x € I, exactly one of x and —z is a square in F,. If A is not a square in
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Fy, then —\ must be a square. It follows that — M2 g a power of h if 2||h, and M2 g a
power of h if 4 | h. O

Therefore, throughout this section, we assume 2 | h and ¢ = 1 (mod 4). Moreover,
when dealing with results related to R (7,d), we assume as is not a square in K if 2 | d.

The latter is again due to Theorem 4.2. We write

N N N
1 Rq(% da n) 1 Rq(’%dan '77d ’I’L
— A A Y 4.4
N g TN g 2 o “4)
2|n 2tn

and call Sepen(N) and Syq4(V) the sums on the right-hand side that run over even and odd
integers respectively. Let Fg2 denote the extension of F; obtained by adjoining a square
root of \. We consider the set R2(7,d) of primes P € F 2 K whose rank py(P) is divisible
by d. Note that this makes sense as U C A. Using Lemma 4.4, we see that

LN/2J
(Wadan) - Rq(’%d) 7’L) ' [2 | 7’L]
Seven N Z ( > .

q2n/n

Moreover, we have 0 < Ry(v,d,n) < ¢"/n. Hence Ry(7,d,n) = O(¢"/n), so that

1 LN/2] Ry (v, d,n) Lo 1
4 - ~N

S = 3 R

n=1

It follows that Seyen(IN) converges to d,2(y,d)/2 as N tends to infinity. Moreover, we see
that v is an h-th power in K’ := F2(T), so that b(h) = 0. This means the closed-form

formulas of Section 4.3 can be used to compute J,2(7,d). We obtain the following:

Theorem 4.24. If b(h) =1, then the ds-density of Ry(7,d) is equal to

d,2(7,d)
_ q ) .
(5q (’y, d) = 72 + NLH«Ikloo Sodd(N).
Proof. Note that the limit of Syqq(/V) exists, since the ds-density of R,(vy,d) and R (v, d)

exist by the results of Chapter 3. O

It remains to consider the limit of S,qq(N). We split S,qq(N) into two sums St (N)
and S, (N) respectively, using Ry(vy,d,n) = R;('y, d,n)+ R, (7,d,n). Note that Theorem
4.24 holds for R (v,d) and R, (v,d) as well. In order to compute the two limits, we need

a few preliminary results on the degree f,, and on the existence of 0y ,. By Lemma 3.6,
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we have Fgy 0 = Fq(Cas ,ul/(“”’h)) and it follows that

2, if hy | wv and 2t ordg,(q);
fu,v = Orddv(Q) ’ (4'5)
1, otherwise,

since b(h) = 1 and p = A\*/2. We use 4.5 to simplify the expressions of &;; and &, given in
(3.4) and (3.8) respectively.
Moreover, we need to check the existence of oy, to simplify (3.8) further. Necessary

and sufficient conditions are given in the following lemma:

Lemma 4.25. Assume that ¢ =1 (mod 4) and va(ordg,(q)) = 1. Then, oy, exists if and
only if (dv,q —1) < 2 and

(1) 21 (uv,h), or
(2) 2| uwv, vo(h) =1, and az/A € (K*)?;

Proof. Let a = (uv, h,2°°). We use the same method as in the proof of Lemma 4.16 for
the case a = 1. The only other case is & = 2. We have 2 | h if and only if a € (L*)2.
This is because 7 = > /as is a square in L, which is not necessarily the case for v since
b(h) = 1. If v is a square, i.e., if 4 | h, then ag is a square in L and we may use the method
of Lemma 4.16. Thus, assume that 7 is not a square, i.e., va(h) = 1. Only one of as and

/A is a square in K, say 22, Let u = sgn(ag). If @y = z2, then

o) =0 (37%) = ety

where v/u is in F 2 \ F,. Hence o0(v"?) = 7Y% if and only if o9(vu) = vu. That is,
we need Fp2 to be a subfield of Fy({ay + Cd_vl), the unique subfield M of Fgy o = Fg(Caw)
such that og(y) =y for all y € M, where the equality for Fg, ,,, holds because 2 | ordg,(q).

However, by assumption, we have

2y oo+ Ci') ) = 200,

so that o, , does not exists. Finally, when as/A = z?

—-1/2

, similar computations show that we
have 00(71/2) =9 if and only if og(v/u) = —vu. By the same reasoning as before,

this is equivalent to vo(ordg,(q)) = 1. O

We should note the presence of the assumption va(ordg,(¢)) = 1. Recall that there are
only two cases to study for R (v,d), namely d = 2, or 2 | f and (d,q — 1) < 2. They
appear only if there exists k¥ > 1 such that d | ¢" + 1. Otherwise, sets are empty and the
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densities zero. We will see that there is no need to consider the case 4 | ordg,(¢) in our

calculations when 2 | f.

4.4.1 The limit of S ,(N)

This is the easiest case and the most straightforward. By Theorem 3.15, we have

N

R¥(7,d,
St (N NZ Z/n”— Z 7,dn+0d<NZ n/Q)
2’m

n=1

for all N > 1, where > means that the sum is over all odd n divisible by f. Moreover,
since 7(e,,) < n, the error term is Oy(1/N) because the series converges. Thus, we see
that St ,(N) =01if 2| f. Hence, we assume f is odd. Let

d
S = |_| |_| Aw,on

wld>® a=1
(a,d)=1

which is a subset of (3.3), where Ay, o = {fw(a + dn) : n > 0}. Then, we see that the set
of indices taken by 3"/ is exactly the set

2,d]
SNEN+1) = | | |_| Al o
I o B

where A, , = {fw(a + [2,d]n) : n > 0}. Using the method of the proof of Theorem 3.18,

we show that

lim St (N)

5—&-
N—+o00 f Z ' (46)

|d/00
We find the following lemma:
Lemma 4.26. Assume va(f) =0. Then, we have &, = Sd/,lyh(e}Lw)/Q.

Proof. We first take a look at the expression of & in (3.4), and at B(u,v) = [fu., | fw] in
particular. Since fw is odd, by (4.5), we have

fup | fw <= fu =ordg,(q) and 2t ordg,(q).

Note that we have used ordg,(q) | fw if and only if v | ej{w. We see that f, , = ordg,(q) if
and only if hy t uv by (4.5) again. By Lemma 3.12, and since ¢ =1 (mod 4), we have

fdv

orday(q) = (¢f —Ldv)’
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In addition, we have v | e ., and va(e fw) = va(e]) since fw is odd. It follows that ordg,(q)
is odd because vy (dv) < v2( J—1). Hence

B(u,v) = [hy 1 uv).

This is a better form of B(u,v). Indeed, we already see that B(u,v) is always 1 if d is odd.
In that case, our lemma follows directly.

Assume 2 | d. Since B(u,v) = 0 if hy | v, we are only concerned with indices v | e;fw
such that hj v in the first sum in (3.4). Let v be such an integer and put k = va(h) —v2(v).

Then, the general term in v in (3.4) is

Zu )(uv, h) 2 f .

uld

Let us call S(v) the sum in the above and assume that k& > 2. Then, we have [2¥ fu] = 1
for all u | d because of the Mdbius function in S(v). By proofs similar to the proof of

Lemma 4.5, we write S(v) as the product

s =PI 1)

I|d

The product is zero because of the factor [ = 2. Indeed, we have h; t v and (2v,h) = 2(v, h).
Thus, we only need to study the case k = 1, that is, v2(2v) = va(h). We obtain

w =

+
4 p(u)(2v2 (h)— 1uv ,h) Sd’,l,h(efw)
W=D DT S

U‘( + d/oo) uld’
the result we sought. d

Theorem 4.27. Assume vo(f) = 0. Then, we have

, C1(d, h) [vi(dh)
| S+ N) = 2 1 — — _
N—1>I-Ii-100 Odd( ) 4f ll;I/ ( (I+ 1)lvz(qf—1) ’

where C1(d,h) =1 if21d, and C1(d, h) = (h, 200)/(6?, h,2°°) otherwise.

Proof. The proof is similar to the proofs of Theorems 4.12 and 4.19, so we may skip a few
details. By Lemmas 4.5 and 4.26, we have & = 0 if fo { fw. Otherwise, let v | d’> be
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such that fw = fov. Then, by expanding Sdr,Lh(e;{w) into a Mobius sum, we obtain

_ p(u)(dh, u™) _ W)
o = Z 2u(qfo — 1,u>®)(v,u>) =~ 2’

uld’

where we used Lemma 3.11 to expand (qf Y —1,u™>). Now, because 2 t u and by Lemma
3.11, we have (¢/° — 1,u™) = (¢/ — 1,u). The limit of S+, (N) is now equal to

0 _p(d) é(v)  d) )
2w Tamap 2 v ~apap D@

’LU|d’°° |d/oc>

f

where D(d') is given in Lemma 4.6. Since ¢ = 1 (mod 4), we have [P(f)] = 0. Thus,
the result follows by applying Lemma 4.18, expanding D(d'), and using the simplifications
used at the end of the proof of Theorem 4.19. O

We summarise our results for S}, (N) in the following theorem:

Theorem 4.28. Assume b(h) = 1. Then, we have

55 (v, d) C1(d, h) [oi(dh)
0f (1 d) = ———+[21 /] 14f H(l_(ﬂrl)l”l(‘i’f‘”»
l|d

where C1(d, h) is defined in Theorem 4.27.
Proof. We use Theorems 4.24 and 4.27. O

Example 4.29. Let ay =T, ap = 3(T3 + T% +1)2, and g = 5. Then, we have h = 2, and
b(h) = 1, where the latter holds because

2
a
(-
7 (T3+T2—|—1>’

and neither of 2 and —2 is a square in F5. We apply Theorem 4.28 with d = 2 and obtain

Sgs(1,2) 1 5 1 11
0 (v, 2) =212 4 = - = 0.4583,
5 (12) 5 ti~91t17 9

where we used Theorem 4.12 on (5;5(7, 2). Our computations show that

6
1 Ry (12)
- 77 ~0.455626
6 Z 57 /n ’

n=1

which matches the expected value. In addition, since ¢ =1 (mod 4), we find that R; (7, 2)
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has ds-density equal to 1/4 from Corollary 3.26. We have

R:
Z £ (1,2) ~ 0.233333,
5”/n

which also matches the expected value.

4.4.2 The limit of S ,,(N)

Recall our assumptions: d | ¢® +1 for some k > 1, ¢ =1 (mod 4), and ay ¢ (K*)?if 2| d.
As usual, we deal with the cases 2 | f and (d,q — 1) < 2, and d = 2 separately.

If d = 2, then Corollary 3.26 already provides a formula for the density. Therefore,
throughout this subsection, we assume 2 | f and (d,q — 1) < 2. By Theorem 3.23,

N — N
_ 1 By(v.din) 1 1
Sodd(N)_an::lqn/n N;a ’y,dn+(9dq<N>
2tn

for all N > 1, where Y. means that the sum is over odd integers n congruent to f/2
modulo f. We see that " is empty if 4 | f. We obtain the following:

Theorem 4.30. Assume (d,q— 1) <2 and 4| f. Then, we have

0,2(7,d)

Moreover, Theorem 4.12 provides a closed-form formula for 5;5 (v, d).

Proof. Theorem 4.12 can be applied because b(h) = 0 in K’ = F_2(T). O

q

Assume that vo(f) = 1. Then, we see that ordg(¢?) = 1. Hence, we have 0,2 (v,d) =0
and we are left with

Nl—1>I—I|-1 Sodd( ) 6(1 (77d)

Therefore, we only need to compute a closed-form formula of J, (7, d) in the case va(f) = 1.

For the next result, we define
R = [va(h) = 1 and dp/A € (K*)?].

This boolean function turns out to be useful in applying Lemma 4.25.



72

Lemma 4.31. Assume vo(f) =1 and let w | d’*°. Then, we have

_ Sd/,l,h(e;w/g) ' 1, if2¢d orR=0;

0, otherwise.

Proof. The proof is similar to the proof of Lemma 4.17. Recall that

(uv, h)
Z Z'u 2uv Blu, ),

vler, /Ul
where B(u,v) = [0y, exists] - [fw = fu (mod 2f,,)]. By (4.5), we have f,, = ordg,(q)
for all u | d and v | d>°. We saw at the beginning of Subsection 4.3.2 that

fw = Orddv(Q) (mOd QOrddv(q))

if and only if v | €2 Hence B(u,v) = [0y, exists|. Note that B(u,v) =1if 21 d and

the result follows. Thus, we assume that d is even.
Since ¢ = 1 (mod 4), we see that dv | ¢//? + 1 implies that 2 v and va(d) = 1.
By Lemma 4.25, we have B(u,v) = [2{u, or 2 | w and R = 1]. By the properties of the

Iverson symbol on conjunctions and disjunctions, we find that

B(u,v) =[2tu]+[2]u]- R

If R =1, then B(u,v) =1 and 26, = Sd71,h(e;w/2) = 0 because €, 5 is odd. If R =0,
then the calculations in the proof of Lemma 4.17 show that §, = Sd’,l,h(ejjw/g)/z O

Theorem 4.32. Assume va(f) =1. We have

_ _ Cy(d, h) [vi(dh)
5‘1 (’Y’d) - 2f_ H (1 (l + 1)lvl(qf771) ’

I|d’

where Ca(d,h) =0 if 2 | d and R = 1, and otherwise,

(h,2%)
Os(d, h) = { (e 7,2%)

1, otherwise.

, if2]d;

Proof. As in the proofs of Theorems 4.12, 4.19, and 4.27, we show that

B Cy(d, h) Jvi(dh)
== 7 1= —
6q (77d> 2f0 H ( (l+1)lvl(qf71) )

I|d’
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where fo = ord g, gy (q). Lastly, we write fo in terms of f. This is done in Lemma 4.18,
which can be applied because 2 | f implies that [P(f)] = 0. O

We summarise our results in the following theorem:

Theorem 4.33. Assume b(h) = 1. If2 | d and ag is a square in K, then §, (v,d) = 0.

Otherwise, we have

- _ Op(,d) Ch(d, h) [oi(dh)
5q (’Yad)—T [2||f] 2f H<1_(l—|—1)l”l(qf_1)>’

1|d’

where C(d, h) was defined in Theorem 4.52.
Proof. We use Theorems 4.24 and 4.32. O

Example 4.34. Let a1 =T, ap = 3(T> +T? + 1)?, ¢ = 5, and d = 14. We have h = 2,
b(h) =1, and f = 6. By Lemma 3.20, we have 055(7y,14) = 0. Hence

Cy(14,2 1 7 _
05 (v,14) = 2(12) - <1 — 8) = 55 = 0.072916.

by Theorem 4.33. In comparison, we computed

R (7, 14)
Z 5 001 0 070833,
5 /n

which matches the value of 7/96.

More experimentations with U (T, 3(T> +T? +1)?) can be found in Table A.5. See also
Table A.6 for another example in the b(h) =1 case.

4.5 The case L =F.(T)

We assume L = F2(T) and, when dealing with results concerning R, (7, d), a2 is not a
square in K if 2 | d and ¢ = 1 (mod 4). The latter assumption is due to Theorem 4.2.
Throughout this subsection, we only consider elements v € L that are monic, i.e., both
numerator and denominator are monic. This will simplify most of our calculations, starting
with the fact that v = %L is automatically an h-th power. The choice for this assumption
is justified by the next theorem, which shows that - is monic in most cases. We prove the

following lemma first, which is an analogue of Theorem 3.3 for Artin-Schreier extensions:
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Lemma 4.35. Assume p = 2. Then, K(a)/K is a proper constant field extension if and
only if there exist (Q € K and c € Fy such that X2+ X + c is irreducible over F, and

a=a1(Q+ ),

where « is a oot of X2+ X +c.

Proof. One way is trivial. Hence, we assume that K(a)/K is a proper constant field
extension. In even characteristic, any degree-two extension of I, is generated by the roots
of an irreducible polynomial

X2+ X +e,

for some ¢ € Fy. Call o one of its root, so that K(a) = K(a). Then, there exist u,v € K
such that a = u + av. Let 0 € Gal(F,2/F,) be the non-trivial automorphism, that is, it
sends « onto « + 1, the other root of X2 + X 4 ¢. We have

ola)=u+o(a)v=a+1=(u+1)+av.
Moreover, since ¢ is non-trivial, it should send a to b = a 4+ a;. We find that
(u+av)+av = (u+1)+av,

and, because (1,a) is a K-basis of K(a), we obtain ajv = 1. Hence a = a;(u + «) and it
suffices to put Q) = u to find the result. O

Theorem 4.36. If p =2, then sgn(y) = 1. If p > 3, we have

(1) sgn(y) = =1, if 2deg(a1) < deg(az);

(2) sgn(y) = 1, if 2deg(a;) = deg(az) and sgn(a;)? = 4 - sgn(az).
Note that 2deg(ay1) > deg(az) can not happen because L # K.

Proof. 1If p =2, then a = a;(Q + «), with the notation of Lemma 4.35. Since, by assump-
tion, v is not in F 2 and
. Q+a
Y= ma

we see that Q ¢ Fy and sgn(y) = 1. Assume that p > 3. By Theorem 3.3, we write A = ud?
for some § € A monic and u € Fy not a square. First, we can not have 2deg(a;) > deg(as)
because A = a% — 4ao, so it would mean that u is the leading coefficient of a%, which is a
square. When 2deg(a;) < deg(az), we have deg(d) = deg(az)/2 and

sgn(a) = sgn (“12‘5\/&) _Vu

2 )
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because deg(a;) < deg(d). Similarly, we obtain sgn(b) = —/u/2 and sgn() = —1. Finally,
if 2deg(a1) = deg(az) and sgn(a;)? = 4 - sgn(ay), then deg(8) < deg(a;) and

a; + 5\/ﬂ> _ sgn(ay)
2

= sgn(b).

sgn(a) = sgn ( >

The result follows. O

Under the assumptions made in Theorem 4.36 and with Theorem 4.1, which allows to
switch between v and —, it makes sense to assume v monic. However, the theorem does
not hold in the case 2deg(a;) = deg(as) and sgn(a;)? # 4 - sgn(as). Indeed, if ¢ = 3,

a1=T+1 and ay=2T>+2T+1,

then A = 272, and one can show that sgn(y) = V2 € Fy. Therefore, although we deal
with most cases here, there are unsolved remaining cases. The first consequences of this

assumption are given in the following lemma:

Lemma 4.37. Assume vy monic. Then, condition (4) of Theorem 4.8 is always satisfied,
and we have [F,, 4 : Fy] = 2-ord,(¢*) for all d | n.

-1

Proof. Since ~ is monic and because or,(y) =, we have

ao(yH (M) = Cégd h)’Y_l/(d’h) =y H/(@M)

)

1/(d,h) %L/ (d,h)

We know < remains monic in I, 4 and that v is monic as well. The same is
true for oo(y) and oo(y"/ (™). Thus, the last condition in Theorem 4.8 is satisfied. Next,
we use Theorem 3.7 to compute the degree. We have

i 1 ordy, (¢2
1nqu2(<n)x (n) = md]qu(Cn)X (1) = g2rdn(@®) _q

Y

which is divisible by (d, h), and the result follows. O

This lemma will be very helpful in our calculations, allowing for many simplifications.

As in the previous section, we can show that

5oa(v,d
M‘F lim Sodd(N)7 (47)

o) = "2 4 i

where S,q4(N) was defined in the same way as in Section 4.4. Note that the results of
Chapter 3 imply that the limit exists because both J,(7,d) and d,2(v, d) exist. Now, we
know that a prime P € K splits in L if and only if deg(P) is even by [29, Proposition 8.13].
Therefore, we have Ry(v,d,n) = R, (7, d,n) for all odd n > 1. We obtain:
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Theorem 4.38. Assume L =Fp(T). Then, we have

8,2(v,d)

If ~v is monic, then Theorem 4.12 provides a closed-form formula for 5;2 (v, d).

Proof. See the above discussion for the equality. If 7 is monic, then [Fg, 4 : ]qu] is equal

to ordg,(¢%) by Lemma 4.37. Thus, Theorem 4.12 applies O

Example 4.39. Letay =1, a3 =T*+T +1, ¢ =2 and d = 15. We have
fX)=X*-a1X +ta=(X+T)+(X+T)+1,

thus the roots of f area =T+« and b =T +a+1, where o € Fy satisfies a® +a+1 = 0.
We see that v = a/b is monic and L = Fp(T) by Lemma 4.35. Thus, we can apply
Theorem 4.38. We find

(v, 1 1 1 1
51019 = S0 (1Y (1Y 5 s

Numerically, we found

1

Z B (v15) 0.150000,
27 /n

which matches the value. In addition, note that 15 1 2% +1 for all k > 0. Therefore, we

have §3(v,15) = 65 (v, 15) = 5/32.

In the following, we address the case of §, (v,d). We know that it is zero if d ¢ F+1
for all k£ > 1. Otherwise, Lemma 3.20 shows that S,qq(N) = 0 for all N > 1 unless 2 | f
and (d,q—1) <2, ord=2.

When d = 2, by Corollary 3.26, we only need to address the case ¢ = 3 (mod 4).
Moreover, there is no need to consider the identity (4.7). Indeed, in the proof of Theorem

3.29, we actually show that

N o
R (v,2,n)
o= li — BAU RS
0 N—l>r—r&-looan::1 @ /n
2|n

where §g is defined in the theorem, while the sum given by §,(v,2) — do corresponds to
the limit of S,q4(IN). We have the following:
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Theorem 4.40. Assume ¢ =3 (mod 4) and «y is monic. Then, we have

hy , _
1—————, ifh1]eg;
5-(r2) = L. T amarny il

0, otherwise.

Proof. First, note that the 0y constant defined in Theorem 3.29 is zero because L/K is not
geometric, and thus neither is Lp o/K. Next, by Lemma 4.37, we have

2ordyi+1(q

o )
152 = (o (0), )

= Ord2i+1 (q) )

for all # > 1. Then, by Lemma 3.12, we obtain fy; i = 2. Also, we see that oy, 5 always
exists if i > 1 or (4,5) = (0,1), since (2°7!,¢ — 1) = 2 and 2 | ordyi+1(g), and by Lemma
4.37. Hence B(27,2") =1 for all i > 0 and j € {0,1}, and

72, h) _ Saaner)
Z Z 21+J 21261 !

i=0 je{0,1}
by Theorem 3.29. The result follows by Lemma 4.5. O

Example 4.41. Let ay = 212, ag = T* 4+ (T +1)?, and ¢ = 3. We see that A = —(T+1)?,
thus L = Fo(T). Moreover, we have h = 1 and sgn(y) = 1, by Theorem 4.36. Therefore,
we can apply Theorems 4.38 and 4.40. On the one hand, we have

1 11 _
T 1 =) == =04
55 (7,2) = 2< > 5 = 0458333,

and on the other hand, we have

1\ 3
1--)=2=037

N |

93 (7,2) =

We computed

8
R3 ~v,2 1 R3 (7v,2)
— 4721 d — — 7~ ~ (.
E 3 ~ 0.472107 an 3 E 3 n 0.368990,

n=1

which matches the theoretical values.

We are done with the case d = 2. We already see that the assumption that v is monic

will simplify most calculations. Now, assume that 2 | f and (d,q — 1) < 2. By Theorem
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3.22, as in the previous section, we may write

N _ N
1 R, (v,d,n) 1 1
Sl ) = 3 3 P = 5 40 (y). 6

n=1
2tn

for all N > 1, where >’ means that sum is over odd n’s congruent to f/2 modulo f.
Theorem 4.42. Assume (d,q—1) <2 and 4| f. We have o, (7,d) = 0.

Proof. The sum in the right-hand side of (4.8) is empty if 4 | f. Thus, the limit of S,qq(N)
is zero. By (4.7), we are left with

6,2(7,d)

5(1_(77d): . 9 )

However, in K’ = F2(T), we have K'(a) = K'. This means that L' = K and there is no
prime P in K’ with ep = —1. Hence Rq} (7,d) is empty. O

Next, if va(f) = 1, then ordg(¢?) = 1. It follows that 02 (v,d) = 0 by Lemma 3.20.

Therefore, from (4.7), we obtain

N1~1>I}rloo SOdd(N) = 5q (77 d)

Thus, there is no more trick we can use and we have to compute a closed-form of §, (-, d)

directly. Fortunately, the assumption ve(f) = 1 simplifies many calculations.

Theorem 4.43. Assume v is monic, (d,q — 1) < 2, and va(f) = 1. We have

_ Cs(d, h) [vi(dh)
= 1l
by (nd) = 22 H( o)

1|d
where
1, if 21 d;
gva(dh)
Cs3(d,h) =<1 — CTNCTSIESE if 2| d and hy | €12
0, otherwise.

Proof. Recall from (3.9) and (3.8) that

6, (7,2) = [;p(j]} Z %; and 0, Z ZM (uv, 1) B(u,v).

v|ef /2 uld
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We work on B(u,v) first. We have (dv,q — 1) < 2 if ¢ # 1 (mod 4). If ¢ Z 1 (mod 4),
we see that ve(d) = 1, and v is odd because €ty2 15 Hence (dv,q — 1) = 2. Next, using

Theorem 4.8 and Lemma 4.37, we find that oy, exists and
B(u,v) = [fw = ordg,(q) (mod 20rdg,(q))].

We saw at the beginning of Subsection 4.3.2 that this congruence is equivalent to the

divisibility condition v | €y jo- 1t follows that B(u,v) = 1 and 4, = Sd,Lh(eJpr). By
Lemma 4.5, we have d,, = 0 if (h,d*) {e}fw/Z and otherwise, we have
- p(u)(dh, u*)
6“’ - Z fw/2 00)’
u(q/v/? +1,u)
uld
Note that the general term in ¢, is a multiplicative function in u, so d — ¢, =: d,,(d) is

also multiplicative. Thus, we obtain

) oua(dh) (2]d] -
o, (d) = L EAPESyESY by (d'),

where we took into account that vg(e;w/Q) = '1)2(6;/2) = va(q + 1) — vo(d) is fixed. The
latter implies that 6, (v,2) = 0 when hy J(ejf/z and 2 | d. Otherwise, let f = ordg(n,q)(4);
it satisfies va(f) = v2(f) = 1, by Lemma 3.12. We have (h, d*) | €,2 if and only if there
exists v | d'™ such that fw = fv. We obtain 6, = Sd’,l,h(‘i;w/g) - €¢(d, h), where

1 if 21 d;
€q(d, h) = ova(dh)

if 2| dand hy | e,

T 9ua(gtl)+1° f/2°

Using the change of variables fw = fv, expanding Sd/,lﬁ(e;wm) into a Mo6bius sum, and

applying Lemma 3.11 to (qf"/2 + 1,u*), we obtain

. dh )(dh, u
dq (v,d) = Z > qf - 1 uoo) (V)vuoo).

v|d/>° u|d’

We apply Lemma 4.6, and the rest of the proof follows as in the proof of Theorem 4.19. O

We summarise our results for d > 3 in the following theorem:
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Theorem 4.44. Assume v is monic, 2 | f, and (d,q—1) < 2. Ifva(f) =1, then
B Cs(d, h Jui(dh)
5q(%d):MH =]
/ i (14 1)lva’=1)
where C3(d, h) was defined in Theorem 4.43. Otherwise, if 4| f, then §, (v,d) = 0.
Proof. We use Theorem 4.43 and (4.7). O

Example 4.45. Consider the sequence of Example 4.41 with ¢ = 3 and d = 14. We have
h=1and f = f =6. By Theorem 4.44, we have

C(14,1 1 7
03 (7,14) = casl) 6’ ). <1 - 8) == 0.109375.

Numerically, we found the following:

12 _
1 R3 (77 14)
— — - x~(0.116224
12 7; 3" /n ’

which is relatively close to our result. For further investigation, the values obtain numeri-

cally for n =9, 10, and 11, are
0.154965, 0.139468, and 0.126789,

respectively. We see that it seems to slowly converge towards our result. Note that the
degrees n =9 and n = 12 are important. Indeed, they are multiples of f/2 = 3, and this is

where we find new contributions to the density. See Table A.8 for more experimentations.

4.6 Algorithms and SageMath computations

In this section, we provide algorithms that find many of the constants that were defined in
this chapter. We compute h, b(h), and o7 (y'/"'). By the results of Sections 4.3 and 4.5, the
computation of such constants is difficult only when L/K is a geometric extension of degree
2. This will be our assumption throughout this section. We propose an implementation of
every algorithm presented using SageMath 9.0 [35].

In the first subsection, we prove a simple algorithm to compute the constant A, not
only in L, but in a given constant field extension of L as well. The latter will be useful in
the next subsections. We use the Newton polygons of a certain family of polynomials over
constant field extensions of K.

In the second subsection, we address the case of the boolean function Q. The algorithm
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simply computes successive square roots of v, or —v in some cases, down to 'yl/ M Then,

we find its image by oy, easily.

4.6.1 The h and b(h) constants

Throughout this subsection, we let M = Fyn L for some m > 1. To construct our first
algorithm, recall that + is an n-th power, n > 2, if and only if the polynomial X" — ~ has

a linear factor over M. This is equivalent to the polynomial
fa(X) = (X" =N)(X" —o1(7)) = X*" —uX" +1

having an irreducible factor of degree two over F,m K, where we put u := (a2 — 2as)/ay

and oy, for the non-trivial automorphism of Gal(M /Fym K). Indeed, we have

Theorem 4.46. Let n > 2. We have v € (M™)" if and only if fn(X) has an irreducible
factor of degree 2 over Fym (T).

Proof. Let v = 2", where z € M. Then X" — v = (X — z)g(X) for some g € M[X], and
f(X) = (X —2)(X = or(2)) - h(X),

for some h € Fgm K[X]. The polynomial (X — z)(X — or(x)) € Fm K[X] is irreducible,
as v € Fym K ensures that x ¢ Fym K. For the converse, if f, has an irreducible factor of
degree 2, say g, then it must split over M. Indeed, by contradiction, if g remains irreducible
in M[X], then it divides one of X™ —~ and X" —~v~1. We assume that

X" —y = g(X)h(X),

for some h € M[X]. Then X" —~y~ = g(X)(o1h)(X), where o1,g = g since g € Fm K[X].
Hence ¢ divides both X™ —~ and X™ —~~!, which are coprime because v # v~ *. This is a
contradiction. Therefore, there exists z € M \ Fym K such that g(z) =0 and 2" =~. O

We seek to determine for which integers n > 2 the polynomial f,,(X) can be reducible.
We draw the Newton polygons of f, to show that there are only finitely many integers

n > 2 to check. Those are divisors of v(u) for a fixed valuation v of M.

Theorem 4.47. We have v € (M™)" only if n | deg(u) if 2deg(ai) > deg(az), and

otherwise, there exists a prime P | ag in A such that vp(u) <0 and n | vp(u).

Proof. Assume 2deg(a;) > deg(az). Then, the Newton polygon of f,(X) with respect to

the valuation v, = —deg in M is the following:
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Voo (1)

Voo

If  is an n-th power, then f,(X) is reducible by Theorem 4.46. On the Newton polygon,
we see that non-constant factors of f,, have either n/vs(u), or —n/vs(u) as their slope.
Since f, is reducible, we should have non-trivial integer points on the two segments, where,
by non-trivial, we mean different from (0, 0), (n, v (u)) and (2n,0). Such points exist only
if (voo(u),n) > 1, thus only if n | deg(u).

Assume 2deg(a;) < deg(az). If vy(u) > 0 for all primes p | ag in Fym[T], then az | af
and ay = \a? for some \ € F; because 2deg(a;) < deg(ag). This is a contradiction to the
non-degeneracy of U. Therefore, there exists a prime p | ag with v,(u) < 0. We draw the
Newton polygon with respect to the p-valuation to show that n | vy(u). Let P = p N A.
Then, we find that n | vp(u) since v € K and Fym(T') is a constant field extension of K,

hence unramified. O

Our first algorithm consists in computing a bound D for the powers of «, whose ex-
istence is ensured by Theorem 4.47. Recall that v = + A"/ (Q’h)%L . In particular, we see
that « is almost a full power of h. More importantly, only a constant is preventing ~ from
being an h-th power. Therefore, we may extend the field of constants of L to F,m for some
m > 1, so that R WA z", where z € Fym. It follows from Theorem 4.47 that D is a

bound for our constant h.

Algorithm 1 Computation of a bound for A

Input: Non-zero polynomials a1,as € A with a%/ag ¢ ]qu and such that X2 — a1 X + as
is irreducible over A.

Output: Integer D € Z such that h | D.

1t u 4+ (a3 — 2a3)/ay

2: D <+ 2deg(ay) — deg(as)

3: if D <0 then > Looking for P with vp(u) < 0 in case 2deg(a;) < deg(az).

4 for P | as do

5: Dp + Up(u)

6 if Dp <0 then

7 D+ —Dp

8 break

9: return D

In the next algorithm, we aim to compute both constants h and b(h). To compute h,
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as mentioned above, we add constants to L so that « is an h-th power in M = Fgm L. If
D is odd, then ~ is already an h-th power in L, so m = 1 and b(h) = 0. If D is even
and p # 2, we consider the field Fym = F2((yuy2p)), Where m = 20rdy.,2p) (¢%). We first

consider Fg2 to make sure that M2 is an h-th power. The 2v2(2D)

-th roots of unity ensure
that +1 is an h-th power. If p = 2, then v = A/ 2%‘ . Since every element of [F, is a square,
we see that A2 is an h-th power, m = 1 and b(h) = 0.

We check whether f,(X) has an irreducible factor of degree two in Fym(T) for all
divisors n | D. By Theorem 4.46, the largest such n is equal to h. The method works
similarly to compute b(h) when 2 | h. Once we know the value of h, we check whether ~

and —v are hi-th powers in L. For that, we introduce another polynomial
(X)) = (X" + (X" +or(7) = X*" +uX" + 1.

There is only a change in the sign of u, so that Theorems 4.46 and 4.47 hold for g,. Now,
it suffices to check that fj, and g, have an irreducible factor of degree two. If only one
of them does, then b(h) = 0. Moreover, if it is gp,, that has an irreducible factor of degree
two and not fp,, then we know v should be switched to —v. If none of them have such a
factor, then b(h) = 1.

Algorithm 2 Computation of h and b(h)

Input: Non-zero polynomials aj,as € A with a?/ay & F; such that X2 — a1 X + ay is
irreducible over A, and the bound D.
Output: The 3-tuple (h,b(h),e), where e = —1 when b(h) = 0 and +y should be switched
to —v, and e = 1 otherwise.
:h,m,e <+ 1
. if D is even then m < 20rdyu,ep) (¢?)

N =

: for n| D do > Divisors should be checked in increasing order.
if n # D and fp,,(X) has a prime factor of degree 2 in Fym (T')[X] then
h < [h,D/n]
. if fp, (X) has a prime factor of degree 2 in Fy(T")[X] then
return (h,0,1)
. if gp, (X) has a prime factor of degree 2 in F,(7')[X] then
return (h,0,—1)
10: return (h,1,1).

© P > gk w

We implemented Algorithms 1 and 2 using SageMath, and display our code below.
First, we define F,, A, and B := K[X]:
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[1]: g=9
F.<a> = GF(q)
A.<T> = F[]
B.<X> = Frac(A)[]

The program below, h bound, provides an implementation of Algorithm 1. Given two
polynomials aj,as € A, it returns an integer D € Z such that h | D. As an example, we
compute h _bound(7,—1), which corresponds to the sequence of Fibonacci polynomials

of characteristic polynomial X% — TX — 1.

[2]: def h_bound(a_1,a_2):
D = 2xA(a_1) .degree()-A(a_2) .degree()

if D<=0:
for p in prime_divisors(a_2):
Dp = valuation(a_1"2-2*a_2,p)-valuation(a_2,p)
if Dp<0:
D = -Dp

break
return D

h_bound(T,-1)
[2]: 2

The next program, h constants, provides an implementation of Algorithm 2. It takes
two polynomials a1,a2 € A as an input and returns [h, b(h), €], where e = —1 if b(h) =0
and ~ should be switched for —v, and e = 1 otherwise.

In the first lines of the program, we define our setting. For instance, we define D by
calling the h _bound function, then m is defined in the first if statement. The next lines
define Fym, Fgm (T")[X], and u. The computation of h is done in the first for loop. The last
part of the program focuses on computing b(h) as presented in Algorithm 2. Depending

on whether the test holds for £ or g, we can determine the value of e.

[3]: def h_constants(a_1,a_2):
D = h_bound(a_1,a_2)
[h, m, b, el = [1]1x4



if D%2==0 and F.characteristic()!=2:

v = valuation(2x*D,2)

m = 2*Mod(q~2,2"v) .multiplicative_order ()

G.<c> = F.extension(m)

R.<t> = G[]
K = Frac(R)
C.<x> = KI[]

u= (a_1"2-2*%a_2)/a_2

for n in divisors(D):

d =D//n
if h¥%d==0:
continue

f = x~(2xd) -K(w) *x~d+1
for p, exp in f.factor():
if p.degree()==2:

h = lcm(h,d)
break

if hJ2==0 and qgJ%4==1:

w = valuation(h,2)
f = X" (27 (w+1))-uxX"(2"w)+1
g = f+2xuxX"(27w)

for p, exp in f.factor():
if p.degree()==2:
b=20

break

if b==1 and F.characteristic()!=2:
for p, exp in g.factor():
if p.degree()==2:
b=0; e = -1

85
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else: b =0

return [h,b,el

%time h_constants(T,-1)
[2, 0, 1]

In the example computed above, with a; = T and as = —1, we obtain h = 2, b(h) =0

and e =1 from h _constants. We check that this is valid. For the sequence of Fibonacci

polynomials, we have v = —a?, where a is a root of X2 — TX — 1, say
T+VT?+4
4= —":
2
Since ¢ = 9, we have v = (ia)2 for some i € Fg such that i = —1. It suffices to prove that

ta is not an n-th power in FqL. Following the method of Theorem 4.46, we show that
Fo(X) = (X" —ia)(X™ —ib) = X*" —iTX" 41

does not have an irreducible factor of degree 2 when n > 2. This is straightforward if we
see F,(X) as a polynomial F,,(X,T) in T. Indeed, we have

Fo(X,T) = —iX"T + (X*" + 1),

and the only way for F,,(X) to be composite is for its coefficients —i X" and X" + 1 to
have a common factor. This is not the case, thus ia is at most a power of n = 1. We

obtain h = 2. We easily see that b(h) = 0 and e = 1 because 7 is a power of 2.

4.6.2 The Q constant

In this second subsection, we present an algorithm computing Q = [0y, (’yl/ hiy — A hl].
Note that the boolean Q is only needed when b(h) = 0. Moreover, we assume the char-
acteristic to be odd, because Q does not appear in the density formulas when p = 2. We
assume h to be even in Algorithm 3. If h is odd, then we know that @ = 1. Note that
because o (v/") = £47VM we use @ = (o,(y"/M) - 4/"M +1)/2 in the algorithm.
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Algorithm 3 Computation of Q

Input: Non-zero polynomials a1,as € A with a%/ag ¢ IF; and such that X% — a1 X + as
is irreducible over A, the constant h, and e = —1 when ~ should be switched to —v,
or e = 1 otherwise.

Output: The constant Q.

1: r <+ ey

2: for 1 <n <wy(h) do

3 if r is a square in L then

4: T \/7:

5. T /-r

6: return (or(r)-r+1)/2

As in Subsection 4.6.1, we implemented Algorithm 3 using SageMath. We use the same

setting and the sequence of Fibonacci polynomials as an example.

[1]: g=9
F.<a> = GF(q)
A.<T> = F[]
B.<X> = Frac(A)[]

The next program is a preliminary to the implementation of Algorithm 3. Indeed,
SageMath does not have a built-in function for square roots in geometric extensions of the
rational function field K. With A, z, y € K as inputs, the sq_root function returns a
pair u,v € K such that u + vWA is a square root of x + y\/K in L.

[2]: | def sq_root(Delta,x,y):

N = x72 - y~2*Delta

if not N.is_square():

return False

n = N.sqrt()
u = (x+n)/2
v = (x-n)/2

for z in [u,v]:
if not z.is_square():
continue

a = z.sqrtQ
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X = (x-n)/(2xDelta) if z==u else (x+n)/(2*Delta)
if X.is_square(Q):

return [a, X.sqrt()]
return False

sq_root(T~2+4, -(T~2+2)/2, -T/2)
[2]: [(a + DT, a + 1]

In the above example, we computed a square root of « for the sequence U(T, —1) of

Fibonacci polynomials. We have A = T2 4 4 and v = (ia)?, where > = —1 and

a:TJFZ\/Z:2T+2\/E.

The letter a in the program is a primitive element of the extension Fg/F3. In our case, it
satisfies a> = a4 1. One can easily check that 2i = a + 1.

The final program of the section, Q boolean, is an implementation of Algorithm 3,
using sq_root to compute square roots. With inputs a;,as € A such that b(h) = 0, the

constant h, and e, it returns the values of Q.

[3]: def Q_boolean(a_1,a_2,h,e):
v = valuation(h,?2)
Delta = a_1"2-4*a_2

x = ex(a_1"2-2%a_2)/(2*a_2)
y = exa_1/(2%a_2)

for n in range(l,v+1):
r = sq_root(Delta,x,y)
if r==False:
r = sq_root(Delta,-x,-y)
x = r[0]
r[1]

<
I

return (x~2-Deltaxy~2+1)//2

Q_boolean(T,-1,2,1)
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[3]: 1

In our example, we obtain Q@ = 1. We can easily check this claim, since we know h = 2

and v'/2 = ia. We have oy, (ia) = ib, so that o (ia) - ia = i’ab = —ay = 1. Hence Q = 1.
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Chapter 5
The order problem in Z

In this chapter, we study the order problem for Lucas sequences U(ai,a2) with integer
parameters aj,ag € Z \ {0}. That is, can the density of prime numbers p whose rank of
appearance py(p) is divisible by a fixed integer d > 1 be found explicitly? We assume
that U is non-degenerate, so that it makes sense to consider this problem. As mentioned
in Chapter 3, this question has been study by many authors. There are two main results
that stand out. One is a theorem of Wiertelak [40], that can be use to solve the reducible
characteristic polynomial case. The second is a result of Sanna [30] that deals with the
irreducible case under the assumption that d is odd and not divisible by 3 if L := Q(VA)
has absolute discriminant A; = —3, where A = a? — 4as.

The method used in Chapter 4 to compute densities, which consists in considering
“good” booleans functions, can be applied to the number fields case. We are able to
complete the work of Sanna for even integers d under the assumption that Ay & {—4, —3}.
The latter ensures that L is not a cyclotomic field, which comes with many problems
regarding our methods. In the function field setting, the natural analogue is the constant
field extension case discussed in Section 4.5. In fact, this is the only incomplete part of
the irreducible characteristic polynomial case considered in this section, and also the only
instance where roots of unity are adjoined to Fy(T").

Let R.(d) be the set of prime numbers whose rank of appearance in U is divisible by
the integer d > 1, where v = a/b is the quotient of the roots of X2 — a1 X + ap, which
we assume irreducible. Without loss of generality, we exclude the finitely many ramified
primes p | 2A. As seen at the beginning of Chapter 3 in the function field case, although
many Lucas sequences share the same v, their set R, (d) may differ by only finitely many
primes. Therefore, for asymptotic density results, one can consider R.(d) for only one of
these sequences. We denote by d-(d) its natural density.

As in Chapter 4, we want to be able to switch between v and —v at certain times.

This will allow us to find density formulas in many more cases. Recall that —y can be
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associated with the Lucas sequence U(A, —asA) by Remark 2.10. Therefore, it makes
sense to consider the set R_-(d) and to use 0_-(d) in the following theorem, which is an

analogue of Theorem 4.1:

Theorem 5.1. For every d > 2, we have

§_(2d) + 6 (d)2) — 6_(d), if 2||d;

6(d) =
! d_~(d), otherwise.

Proof. The proof is the same as the proof of Theorem 4.1 in the function field case. O

In the first section, we prove various preliminary results on cyclotomic and Kummer
extensions. Most notably, we study the existence of certain automorphisms in the Galois
group of L, 4 = L(Cn,’yl/d) over Q, and we compute the degree of L, ;/Q. Another
important result is Lemma 5.8, an analogue of Lemma 4.5, that computes a closed-form
formula for some special series.

In the second section, we briefly explain how the results of Sanna can be restated to
prove the existence of d,(d), the asymptotic density of R, (d).

We prove closed-form formulas for d-(d) in the third section. Our formulas are written
as linear combinations of the special series studied in Section 5.1.

In a final section, we display our algorithms and their SageMath [35] implementation.
They are used to compute various boolean functions and field discriminants that appear

in the density formulas.

5.1 Preliminary results

We study Kummer extensions L, 4 = L((n,*yl/d) of L, where d,n > 1, d | n, are integers,
(n 1s a primitive n-th root of unity, and Ay & {—4,—3}. We start with a result on the
behaviour of d-th powers in cyclotomic extensions of L. This generalises [30, Lemma 4.4]

and is an analogue of [31, Lemma 4.§].

Lemma 5.2. Let v € L and d | n be positive integers. Then, we have v € L(¢y,)® if and
only if either v € (LX) and d is odd, or v = +6%? for some 6 € L N (L(¢,)*)? and d is

even.

Proof. One way is trivial. Thus, we assume v = b? for some b € L((,). If a = A = B,
then L(Cp,a/™) = L(¢,) is an abelian extension of L. By [14, Theorem 3.2, Chapter §|,

we have af* = ¢" for some ¢ € L, where m = 1, if 2 4 n, and m = 2, otherwise. If 2 { n,
then 4" = a¢ = ¢

which as discriminant Ay, ¢ {—4, -3}, is (, = 1.

implies that v = ¢,¢? = ¢? because the only n-th root of unity in L,
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If 2 | n, then a® = ¢”. It follows that a = £¢™? and 4" = a? = (£1)%™/2. We are

done if 2 | d, since we have
,yn _ Cdn/2 and v = Cﬁ;cd/Q _ :th/Q,

for some k € Z. If 21 d, then v = ec®™? for some € € {£1}. We now have two cases.
First, if € = —1, then we must have vy(n) = 1, since —1 is not a square in L. Hence dn/2
is odd and 4" = (—c)d"/ 2. Moreover, —c must be a square because 2 | n. Therefore, there
exists k € Z and x € L such that

A" = (—c)d”/2 =2¥ and ~= Cﬁxd =+z¢ = (:I:a:)d.

Lastly, if e = 1, we put n’ = n/(n,2), so that v2* = +¢”% = (+¢)"'¢ by the method of
the above. Put y = £c. Then, we see that y must be a square in L because  is raised to
an even power, while n'd is odd. It follows that 72”/ = J;Q”/d, and thus v = +2% = (ix)d

for some x € L. O

From now on, we consider v = a/b the quotient of the roots of X2 — a1 X + as, which

we recall is irreducible.

Definition 5.3. For all uw € {£1}, we define h(u) to be the largest integer t > 1 such that
uy € (L™)'. We call h := max(h(—1), h(1)).

We assume h = h(1) throughout the rest of this section. When h = h(—1), the results
hold for —~ instead. This will be helpful in Section 5.3. Note that h(1) and h(—1) may
differ only by their 2-adic valuation. Also, if one of them is even, then the other must
be odd. This is because —1 is not a square in L. Therefore, a necessary and sufficient
condition for h(1) > h(—1) to hold is that v € (L*)?. We write v = 7%, where o € L,
and let dg = d/(d, h) and hg = h/(d, h).

Theorem 5.4. The minimal polynomial of v'/* over L(¢y) is

(1) X% — 50, if 24dy or v° & (L(Cn)*)?; or
(2) X%/2 _ 780/2, otherwise.

Proof. Call f(X) the minimal polynomial of ~Y? . In both cases, we have f('yl/d) =0, so
that it suffices to show the irreducibility of f.

Assume 2 1 do or 75° & (L(¢,)*)?. Let 1| do be an odd prime. By Lemma 5.2, we see
that v € (L(C,)*)! if and only if 420 € (L*)!. By the maximality of &, we have I | ho,
which contradicts (dg, hg) = 1. We are done if 2 1 dy by Theorem 3.4. Next, assume 2 | dy
0

and 75”0 is not a square in L((,). By Theorem 3.4 again, it suffices to show that 'yg is not
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of the form —4z* for some = € L((,) when 4 | dy. This is equivalent to —}° /4 = +y? for
some y € L, by Lemma 5.2. Hence

y=e-(29)* M, ee {£1}.

If e =1, then 2 | hy and we have a contradiction to (dp, hg) = 1. If e = —1, then —v is a
square. However, we saw that this is a sufficient condition to have h(—1) > h(1). This is
not possible since we assumed h = h(1). Hence 41 is not of the form —4z* and f(X) is
irreducible by Theorem 3.4.

Assume 2 | dy and 'ygo = 22, for some z € L((,) \ L. If z = 2!, where 2 € L(¢,) and
| dp is an odd prime, then 'ygo € LN(L(¢,)*)!. By Lemma 5.2 and the same reasoning as
the previous case, we show that this contradicts (dp, hg) = 1. Next, note that if 4 | dy and
z = —4y* in L(¢,), then z = (2iy)? because 4 | n. Therefore, showing that z can not be a
square is sufficient to prove the irreducibility of f(X). By contradiction, if z is a square,
then ’ygo is a 4-th power in L((,), which is equivalent to 730 =462, 6 € L, by Lemma 5.2.
We saw that this either contradicts (dp, ho) = 1, or h = h(1). O

Lemma 5.5. We have %f)zo € (L(C)*)? if and only if v*™ € (L(Cy)™)2.

Proof. One way is trivial. Thus, assume that 71/}“ = 22 for some x € L(¢y,). Moreover,
we can write it as z? = (fygo)(d’hl), where h' = h/(h,2%). Then, there exists u,v € Z such
that 2u + (d,h')v = 1 and

ho\1— houy —
2 = (") = (")

It follows that 10 = (zV4h0")2. O

We now have all the tools to prove two results on Kummer extensions. We first find an
explicit formula for the degree of L,, 4/Q. Then, we give necessary and sufficient conditions
for the existence of a o € Gal(L,4/Q) such that o(VA) = —VA, 0(¢,) = ¢, and
a(yl/d) = v_l/d. As in Chapter 3, this automorphism is used to compute the density of

primes in R, (d) that are inert in L.

Theorem 5.6. We have

3 if AL n, 2 | d, and 4P € L(Gy);
2, if Aptn, and 2hy td or vV & L)
1,

do(n)

[Ln,d : @] = (d, h)

otherwise.

Proof. By [30, Lemma 4.5], we know that [L(¢,) : Q] = ¢(n) - 2122 By Theorem 5.4
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and Lemma 5.5, we see that

d if 2| dy and vY/2M € L(¢y);

1

[Lna: LGl = =y -
(d, h) 1, otherwise,

where dy = d/(d,h). The result is obtained using the multiplicativity of the degree and

that 2 | dp if and only if 2k | d. d

Theorem 5.7. Let o be an automorphism satisfying
o(VA) = VA, 0(G)=¢" and o) =470

If 2hy + d or AMM & (L(¢,)*)?, then o belongs to Gal(Ly q/Q) if and only if the two

following conditions are satisfied:
(1) A <O OTALJ(’I’L;
(2) hl fd7 or hl | d and NL/Q(’yl/hl) =1.

Otherwise, if 2hy | d and vY/™ € (L(C,)*)?, then o belongs to Gal(Ly,q/Q) if and only if

the two following conditions are satisfied:
(1) A <0 or AL {n;
(2) ao( /) =1/,
where oo € Gal(L(¢,)/Q) satisfies oo(VA) = —VA and 00(C,) = ¢t

Proof. The proof of [30, Lemma 4.2] shows that oy exists if and only if A < 0 or Af {n.
Since o] L(¢,) = 00, it suffices to find necessary and sufficient conditions for og to be
extended into o. Let u(X) be the minimal polynomial of ’yl/ 4 over L(¢n), which is given
by Theorem 5.4.

First, we assume 2 { dy or 'ygo/Q ¢ L(¢,). Hence pu(X) = X% — ’yé‘o by Theorem 5.4.
Since Ly, g = L(¢,)[X]/(u(X)), we can extend o¢ in exactly dy ways by sending a root of

~1/d

1 to any root of ogu. Therefore, we need ogu to annihilate , or equivalently

(0op)(X) = X% — 0g(74°) = X% — 45"

This happens if and only if ao(fygo) =% ho 1t by 1 d, then fygo is a square in L. Moreover,

because o7(y) = 7!, we have aL(%};Om) = i’yghO/Q. Hence 00(7(’}0) = ’yo_ho holds by

squaring both sides. Thus, the equality O’o(’ygo) =", ho may not hold only if Ay | d. In

that case, we have ao(fygo) = vo_ho holds if and only if 00(71/}“) =~ U/M Joes.
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Next, assume 2 | dy and 730/2 € L(¢y), so that pu(X) = Xdo/2 _ ho/z

method as the previous case, we can extend oy if and only if the equality ao(fyo

. By the same

0/2) _ ’70_h0/2

holds. Clearly, it implies that oo(y/?") = 4~1/2"1_ For the converse, taking the (d, h')-th
root on both sides, where h’ = h/(h,2°), we obtain

ho /2

ooy 1/2h1(dh/)) oo h0/2) C(dh’)'yo ’

0\

for some k € Z. Squaring both sides, we obtain aL(Vgo) = C(Zih,)'yo_ho7 which holds in L.

Hence C(Qéf )y = 1 and, because 2 ¥ (d, 1), we have C(kd,h/) = 1 as well. The result follows
using Lemma 5.5 on the condition 4 € (L(¢,)*)% O

This last lemma is an analogue of Lemma 4.5. It generalises a formula given in the
proof of [30, Lemma 5.4].

Lemma 5.8. Let d,e,h > 1 and v > 0 be integers with 2 | d. Then, we have

p(w uth”\uv]_(hdoo e(d,e,v)
ZZ d[(h doo 62”2 (p _1) (51)

v|d®>® u|d
elv

where €(d,e,v) =0 if e d>°, and

3(h,2%)

e(d,e,y)zl—W

<le | d™>® and 2" 1 €]

For the rest of this chapter, we write Sq.n(v) for the double sum in equation (5.1) and
Sd.e;h = Sae.n(0) as a shorthand.

Proof. For v = 0, see the proof of [30, Lemma 5.4]. Assuming v > 1, we have

(uv, h)
Saen(V) = Safean(0) + > 2“ 27w,

(dv)uw
v|d>®  uld

where >~/ means that indices have 2-adic valuation equal to v — 1 and are divisible by e.
The double sum is zero if 2" | e. Otherwise, note that [2” | uv] = [2 | u] and that e | v if
and only if ¢’ = e/(e, 2%°) divides v. Calling S the double sum, we obtain

S— Z Z 2 uv h) (QV,h) ] Sd’,e’,h(o)’

o o1 o(dv)uv qv—1 2v2(d)
v u

/l,U

where we used that o(dv) = 22(D~1o(d'v). By the case v = 0, we obtain S = 0 if ¢/ { d*°,
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and otherwise, we have

__(oV 100 2
4qr—1 2”2(d)d’[(h, d/oo)7 61]2 7 p2 -1
p

_ —3-(2,h) (h,d'>) p?
= wa (mawep L <p2 - 1) '

pld

Next, we use the identity [(h,d'™), €] = [(h,d>),e,2"](h,2")/(h,2°)2", which holds be-

cause 2" { e implies that [e,2"] = 2"¢’. Hence

_ —3(h,2%)(h,d>) p?
5= (h,2v)[(h,d>),e, 21,]2 ‘ g <p2 - 1) ’

and the result follows by expanding S (¢ 2+ (0)- O

5.2 Existence of the density

In the statement of [30, Theorem 1.1], Sanna assumes d is odd and not divisible by 3 if
L = Q(VA) has discriminant A; = —3. However, these restrictions are not used in the
proofs of the existence of the density or of the upper bound. Indeed, [30, Lemma 5.1]
is stated without them, and while they appear in the statement of [30, Lemma 5.3|, the
proof does not invoke them. The proof of the main theorem only relies on these lemmas
and [30, Lemmas 5.2 and 5.4]. It is in the latter that the assumption on d is required to
compute a closed-form formula of the density.

Let # > 1, and denote by R (d,x) the number of primes p € R, (d) with p < z. By
modifying the proof [30, Lemma 5.2|, Sanna’s theorem can be restated in the following

form, with no assumption on L, nor on d, and under our notation:

Theorem 5.9. Let d be an integer. There exists an absolute constant B > 0, such that

for every x > exp(Bd*®), we have

. . d  z(loglogz)~@
m<d,x>—6w<d>m<$>+0”<so<d>‘ (log )7/ )

where

(u)(1 + [0y, exists])
5 (d) = : ’ ,
K Ulzd;c uzk; [Ldv,uv : Q]

and Ou,v Satisﬁes Uu,v(\/g) = _\/K7 Uu,v((dv) = g;ul; and O'u,v(’)/l/uv) = 771/1“); if it exists
n Gal(Ldv,uv/Q)'
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Proof. As mentioned above, it suffices to follow the proof of [30, Theoreom 1.1]. We deal
with a few technicalities that may change only the proof of [30, Lemma 5.2]. We apply the
Chebotarev density theorem, [30, Theorem 3.5] to

A
Ty dv,u (T) := # {p <z:pt2Aaz, p= <p> (mod n) and d | LU(p)} ,
where vy7(p) satisfies py(p) - wo(p) =p — (A/p). By 30, Lemma 4.2], we have

Ty o (T) = Ty, o0 j0,0(2),

where 7p, /0,c(7) counts the number of primes p < x unramified in Lgy ., and whose
Artin symbol is contained in C', a union of conjugacy classes of the Galois group. Therefore,
we can apply [30, Theorem 3.5] with E = Lgy, 40, F' = Q, and C = {id} if o,, does not
exists, or C' = {id, oy} otherwise. Let ny, = [Lgpuw @ Q] and A, , be the absolute

discriminant of Lg, .. We obtain

1+ [0y, exists]

Ty, dv,uv (l‘) =

e ‘Li(z) + O <2x exp <01 log(z) /nu>) ,

)

for every & > exp(ca max (12, (10g | Auu])?, [Auo ™ /1)), where c1, ¢z > 0 are absolute

constants. To find the same result as in [30, Lemma 5.2|, we make sure the bounds
‘Au,v|1/nu’v <u n® and log |Au,v| <u n’ log(n + 1)7

given in [30, Lemma 4.5], hold in the general case. The second is a consequence of first, so
we may only prove that |Auﬂ,\1/ muv < nd. The only change we have to make in Sanna’s

proof is in the computation of the norm

NL(Cdv)/Q(ALdv,uU/L(Cdv)).

Without knowing the minimal polynomial of v'/* over L(C4y), we use the existence of an
integer s > 1 such that sy € Op, so that

Ldv,uv = L(Cdva ,yl/uv) = L(Cdvv (SuUV)I/uv»

Then, by [7, Lemma 5|, we find that Ap, 1, divides

uv—1 Squ

(u0)™ ™ Niu/a(s""y) = (wo) " Ny jo(s"7) = (uv)

)

o0

so that Ap, i) | (sn)%. It follows that Nrc,)/Q(AL,, /Lca)) | (s7)7 as well.
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From this, the rest of the proof can proceed as that of Sanna. O

5.3 Closed-form formulas

Assume Aj, ¢ {—4,3} and 2 | d. We prove a closed-form formula for the density of R+ (d),
which is given in Theorem 5.9 by

5. (d) Z Z ,u(u)([lL+ [Ou,v exists])’

old> uld dvuv Q]

Similar to Chapters 3 and 4, we separate d,(d) into 5? (d) and 6, (d) in accordance to the

sum 1+ [0, exists]. We have

u 3 U) |0y €Xists
SIS 3 SRR IEIPN 3 S0/ L L)

v|d>® ul|d v|d>® ul|d

Note that 5;r (d) corresponds to the density of Rj(d), the set of primes p whose rank is
divisible by d and with Legendre symbol (A/p) = 1. For 4 (d), we have (A/p) = —1 and
we denote by R (d) the corresponding set.

Now, let Q = [NL/Q('yl/hl) = 1]. We deal with the two cases Q@ = 0 and Q =1
separately. In the Q = 0 case, we are able to find a closed-form formula for d(d) without

much trouble. However, when Q = 1, calculations are much more dense.

5.3.1 The case QO =0

Assume that @ = 0. We prove a closed-form formula for 5::' (d) and 6 (d). Note that our
assumption implies that 2 | h and A > 0. Indeed, since Q@ = 0 and Ny, /() = 1, we must
have hy > 2. Moreover, if 'yl/hl = u+ vVA for some u,v € Q*, then Q = 0 implies that
the norm of /" is equal to u> — v?A = —1. Hence A > 0. These two facts are used to
find the closed-form of 4 (d).

Theorem 5.10. Assume Q =0 and let e = A /(d,AL). Then, we have

570= 51 (G 1 o) I (77)

pld

Proof. Note that @ = 0 implies that NL/@('yl/hl) — —1. Therefore, v'/™ is not a square
in L((,) because of Lemma [31, Lemma 4.6]. By Theorem 5.6, we obtain
e(dv)uv

.Q) = AT olArfdy]
[Ldv,uv . Q] - (UU, h) 2 . (52)
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Hence, using Ay, | dv if and only if e | v, we have

Z Z p(u)(uv, h) 1 _ Sdh + Sdeh
dv Juv  2let] 2 ’
v|d>® ul|d

Note that we used the identity 271") = (1 4 [e | v])/2 in the last equality. The result
follows by Lemma 5.8. O

Example 5.11. Let a; =4, ao =2 and d = 2. We have A = Ap =8, e =4 and

V2

It follows that or,(v"/?) = 2 — V2 # v7Y2. Hence Q = 0 and va(h) = 1. Since d = 2,
there is no need to know the full value of h. By Theorem 5.10, we obtain

1 1\ 4 5 _
ST(2)==-(=+=)-==—=0.2083.
7 (2) 4 <2+8> 3 24

Numerically, we computed Rj(2, 109)/7(10%) =~ 0.207482, where 7 is the prime counting
function, which matches the theoretical value.
Theorem 5.12. Assume Q =0 and let e = Ap/(d,Ar). Then, we have

o3 1 - (h, d) »’
57(d)_2d<(iucm_[e|d andhl)[e].W>H<p2_l>.

pld

Proof. Recall that Q = 0 implies that 2 | h and A > 0. By Theorem 5.7, we see that oy,

exists if and only if hy { uv and Ap 1 dv. Therefore, using Theorem 5.6, we obtain

u(u)(uv h) letolln tud]
=22 " ST

v|d>® u|d

We linearise ¢ (d) using that

[et o]l fuv] 1= [hi|uv] —[e]| o] +[e]v][hn | uv]
2lefv] 2 )

With the notation of Lemma 5.8, we obtain

1

= (Sd,l,h = 8q1,0(V) = Sgen + Sd,e,h(”))»

5 (d) = 5

il

where v = vy(h). By Lemma 5.8, and because v = va(h), we see that Sg 1 4(v) = —2Sg1 4.
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Similarly, when e | d°°, we have Sy, ,(v) = (1 —-3-[m J(e]) - Sd.en- Hence

_ 3
6, (d) = B <Sd,1,h —[h1{e]- Sd,e,h>=

and the result follows by expanding Sg 1 and Sg. p into products with Lemma 5.8. ]

Example 5.13. We keep the same sequence as in Example 5.11 with d = 2 again. By

Theorem 5.12, and because h1 = 2 divides e = 4, we have

3 (1 4 1
S2)=2-(=-0)-==-.
02 =1 (2 0) 32

Numerically, we have R (2, 109)/7(10%) ~ 0.500343. This matches the value of 6, (2).

More numerical comparisons can be found in Appendix A.2 for various sequences. In
particular, Table A.9 is dedicated to the sequence U(4,2) of Examples 5.11 and 5.13.

5.3.2 The case Q =1

From now on, we assume that @ = 1. This makes calculations more difficult as we have to
check whether 4'/" is a square in L(¢,) in some cases. By [31, Lemma 4.6], we know that
~~1/M g a square in L(¢,) if and only if one of \/c and \/C/TL belongs to Q((,), where
c=(u—1)/2 and v/ = u + v\/AL for some u,v € Q.

For the rest of this chapter, we define K1 = Q(1/c) and Ky = Q(\/C/TL) Let us
denote by A1 and Ag their respective absolute discriminants. Now, by [31, Lemma 4.1],
we have y'/M e (L(¢,)*)? if and only if A | n or Ag | n.

We prove that 6,J{ (d) and 6. (d) can be written as linear combinations of sums Sg . (v),

which are defined in Lemma 5.8 and have closed-form.
Theorem 5.14. Assume Q = 1. Let v =v9(h) + 1 and

A
ezﬂ and e; =

(d; |AL])

for all1 <i <2, and put eg = 1 and e3 = [e1, e2]. Then, we have
1< . . ,
5¢(d) = 5 Z(_l)[lzg] (Sd,ei,h(y[l>o]) + Sd,[ei,e],h(V[l>O]))‘

=0

Proof. First, let us define two booleans

Pi(n,d) = [Ar | n]-[2h1 | d] - [A1 | nor Ay | n],
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and Pa(n,d) = [Ar tn]-[2h1 td or A; tn for all 1 <4 < 2]. Then, using Theorem 5.6, we
decompose 5;’ (d) in the following way:

So(d)
2 b

6,;"(d) = Saq1,n+ 51(d) -

where we have defined

p(w)(wv, h)P;i(dv, uv)
Z Z o(dv)uv '

v|d>® u|d

We compute S; and So separately. Note that e | v if and only if Ay | dv, and the same
holds for A; and e;. We use

Pi(dv,uv) = [e | v] - [2hy [u] - ([ex [ 0] + [e2 | v] = [es | v])

to write S1(d) = Sq,je,e],n (V) + Sa fe,e0),n (V) = Sdfe,e5),n (V). Similarly, for Sa(d), we use the

following decomposition:
Pa(dv,uv) =1 —[e | v] = [2h1 | wv][er | v or ez | v] + Pi(dv, uv).

Using the latter and the same technique as for the computation of Si(d), we have
S2(d) = Sa,1.n — Sden — <Sd,e1,h(V) + Sdeq,n (V) — Sd,eg,h(v)> + S1(d),

Finally, going back to the density (5;r (d), we obtain

1
5,?(6[) = B <Sd,1,h + Sd,e,h + 5 (d) + Sd,el,h(l/) + Sd,e%h(l/) — Sd,eg,h(l/)>

The result follows by expanding Si(d) and rearranging the terms. O

Example 5.15. Let a; =5, a0 =1 and d =4. We have A = A, = e =21 and

(5+vaY
-5

Thus, 2 | h. One can show that 71/2 18 not a square in L, so that hy = 2. Since 2 is the
only prime dividing d, there is no need to find the full value of h. We see that Q = 1.
Next, we have ¢ = (5/2 —1)/2 = 3/4, so that K; = Q(v/¢) = Q(V/3) and Ky = Q(\/7).
Their discriminants are Ay = 12 and Ay = 28, and it follows that ey = 3 and e = 7. By



103

Theorem 5.14 and Lemma 5.8, we have

Sa,1,0(0)

07 (4) = =3

1 _
= — =~ (.083.
12

For comparison, we find R;F(ZL, 10%)/7(106) ~ 0.083467 in Table A.12.

We now turn our attention to ¢, (d). The automorphism defined in Theorem 5.7 exists
if and only if A < 0 or Ag {n, and

(1) 2hy tdor 71/}” & (L(Cy) )% or
(2) 2h1 | d7 ,71/}11 c (L(Cn)x)2a and 00(71/2111) _ 7_1/2}11’
where o¢ € Gal(L((,)/L) is such that og(VA) = —VA and 0¢(¢,) = ¢, !. However, we

can make conditions (1) and (2) more precise, with less dependence on n. Indeed, recall
that v'/" € (L(¢,)*)? if and only if there exists 1 < i < 2 such that A; | n. It follows
that the smallest cyclotomic fields containing /%" are Q(¢ja,)) and Q(¢|a,|)- With that
in mind, we define o; = O‘o’Q(C[A”) for all 1 <14 < 2. Conditions (1) and (2) become

(1) 2hyfdor Ajfnforalll<i<2
(2) or 2hy | d and Ji € {1,2}, A; | n and o;(y1/?M) = 471/20
provided A < 0 or Az tn, so that the o;’s exist. We define Q; = [oy(y"/?M) = 4~1/2M]
for all 1 <7 < 2 when it is the case. Let us also define
Pi(n,d) = [2h1 1d or Vi € {1,2}, A;{n], (5.3)
which corresponds to condition (1), and

Po(n,d) = [2hy | d] - [3i € {1,2}, A; | nand Q; = 1], (5.4)

which corresponds to (2). Then, the expression (Py(n,d) + Pa(n,d)) - [A <0 or Ap {n]is

equal to 1 if and only if o exists. We now prove the final result of this section.
Theorem 5.16. Assume Q = 1. With the notation of Theorem 5.1/4, we have

3
Z(_l)B)ﬂ]‘f’Qi (Sd,ei,h(l/[z>0]) + (_1)[A>0} Sd,[ei7€],h(l/[z>0])> )

where Qg =0 and Qz = Q1 9,.
Proof. By (5.3) and (5.4), we may write 6, (d) = S1(d) + S2(d), where

ZZ“ Pi(dv “”) [A<0or Az tdu],

old> uld dvuv .
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for all ¢ € {1,2}. We start with S1(d). Assuming P;(dv,uv) = 1, we have

(T4 e ] v]),

1 (uv, h) (1> [Artdv] (uv, h)
2

Lavu - Q] p(dv)uv \2 ~ 2p(dvyuy

by Theorem 5.6 and using that Az | dv if and only if e = |AL|/(d,|AL|) divides v.

Replacing in Si(d), we obtain a general term of

p(u)(uv, h)

2p(dvyuv (L+[elv]) - Pi(dv,uv) - [A <O orefv]

First, note that (14 [e | v]) - [A < Oorefov] =1+ (=1)2>0%e | 4], Next, we use the

inclusion-exclusion principle to write

Py (dv,uv) =1 —[2hy | wv and Fi € {1,2}, A; | dv]
3
=> (=1)F. 2k | v and €; | v].
=1

Expanding the product (1 + (=1)A>0¢ | v]) - Pa(dv,uv) in S1(d), we obtain
3

S (1) BT (S () 4 (=) g, (7))

i=1

Si(d) =

N =

We now turn our attention to Sa(d). Assuming P;(dv, uv), we have

1 ~ (uw,h) ‘ i
Lavaw - Q] p(dv)uv (1+T[e]v]),

by Theorem 5.6. Again, we use (1+[e|v]) - [A<Oorefov] =1+ (=1)2>%e | v] and

3
Ps(dv, uv) = Z(_l)[Sli] Qi - [2h1 | uv and e; | v],
i=1

to obtain
3 . . .
Sa(d) = Y (~1)FQ; (Sae, (W) + (=)0 g, (1))
i=1
Finally, we add S3(d) to Si(d) and use the identity

(—1)Bi
2

(—1)Bli+2:

+ ()P =




[1]:
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on indices i € {1,2,3}, which coincides with the case i = 0, to find the result. O

Example 5.17. With the sequence of Example 5.15 and d = 4. None of e, ey, or ea divide

d>, so there is no need to compute Q1 and Qo. By Theorem 5.16 and Lemma 5.8, we have

o Sa1p(0) 1 -
oy (4) = TR — = 0,083,

Our computations in Table A.12 show that R (4, 10%) /7 (10%) ~ 0.083326.

In conclusion, we proved four theorems that computes a closed-form formula of the
density of R (d) when d is even and Ay, ¢ {—4, —3}. Together with Sanna’s results, the
only cases left to consider are L = Q(7) and 2 | d, and L = Q({3) and (d,6) > 1.

5.4 Algorithms and SageMath computations

In this section, we provide an algorithm, as well as its implementation in SageMath 9.0 [35],
that computes Q, Q1 and Os, and the discriminants Ay and As, defined in Section 5.3.

In contrast to the previous chapter, we do not provide an algorithm to compute the
constant h. However, we display below a SageMath program, called h constant, that
computes it. The method used in the program was kindly shared by Sanna in an e-mail
communication with him. Thus, we would like to thank him.

We use that v = a?/ay is an S-unit, where S is the set of prime ideals p in O, that
divide as. That is, v belongs to the set

Ofg={r € L:vy(x)=0forall p ¢S}

By Dirichlet’s S-unit theorem, [25, Corollary 11.7], we know that (’)E g is a finitely generated
abelian group. Let e € {£1}. We write ey as a product of generators of OZS, so that the
ged of the exponents is equal to h(e). We easily check which of h(1) and h(—1) is maximal
by checking whether ay is a square in L. This amounts to checking if one of as and as/A
is a square in Q.

Given an input of a1, as € Z such that L is not cyclotomic, h constant returns [h, €],

where e = —1 if 2 | h and 7 should be switched for —v, and e = 1 otherwise.
def h_constant(a_1,a_2):

if (a_1"2-4%a_2).is_square(): return False

s=1

if is_square(-a_2) or is_square(-a_2/(a_172-4%a_2)): s=-1
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x = polygen(QQ)
K.<a> = NumberField(x"2-a_1l*x+a_2)

S = K.ideal(a_2) .prime_factors()
S_unit_group = UnitGroup(K, S=tuple(S))

g = a~2/(s*a_2)
return [gcd(S_unit_group(g) .exponents()),s]

h_constant(1,-1)
[11: [2, -1]

With the Fibonacci sequence U(1,—1) as an example, we see that h = 2 and e = —1
in our computation. This makes sense, as ¥ = —¢? is not a square, while —v is, where ¢

is the golden ratio.
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Algorithm 4 Computation of @, Q1, Oz, A1 and Ag

Input: Non-zero integers ai, as € Z such that L is not Q, nor a cyclotomic field.
Output: The 3-tuple (Q, L1, Lo), where L; = —1if Q =0, L; = [Q;,A;] if @ =1 and o;

10:
11:
12:
13:
14:
15:
16:

17:

exists, and L; = [—1, A;] otherwise.
h, e + h_constant(a,as2)
r (ey)'/M e L
if Np,g(r) = —1 then
return (0,—1,—1)

Find u,v € Q such that r = u—i—v\/E
c+ (u—1)/2
K1, Kz + Q(ve), Q(v/¢/AL)
Ay, Ay < Discg(K7), Discg(K)
for 1 <i<2do
Lz‘ — [O,AZ‘]
if A>0and Az {A; then > Checks the existence of o; in Gal(L((|a,|)/Q)-
L; + [-1,A]
else

for o € Gal(L((|a,))/Q) do
if o(VA) = —VA and o((a,) = (3| and o3(y"/?") = 471/ then
return (1, Ly, Lo)

We are now ready to implement Algorithm 4 in SageMath. First, notice how the

automorphism o; that we look for in the Galois group of L((|a,|) is an element of order

two. Thus, instead of checking every elements of the Galois group, we only check those with

order 2. To do so, we implemented elements of order2 that takes an multiplicative

abelian group G as an input, and returns the set of elements of order 2 in G.

from itertools import product

def elements_of_order2(G):

Id = G.identity()
V = [(g,g.order()) for g in G.gens()]

subgroups = []

for g, n in V:

if n%2==0:
subgroups . append([Id,g**(n//2)]1)



else:

subgroups . append ([Id])

res = []

for vect in product (*subgroups) :

h = 1d

for coord in vect:
h*=coord

if h!=Id:

res.append (h)

return res

G = AbelianGroup([4,6])

elements_of_order2(G)

[2]: [£173, £072, f0"2xf173]
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In our example, we define G the multiplicative abelian group isomorphic to Cy x Cg,

where C), is a multiplicative cyclic group of order n > 1. The elements £0 and f1 are the

generators of G.

[3]: def Q_booleans(a_1,a_2):
Delta = a_1"2-4%a_2

if Delta.is_square(): return False

i
Il

polygen(QQ)
f = x"2-a_1*x+a_2

.<a> = NumberField(f)

~

h, s = h_constant(a_1,a_2)
r = a~2/(s*a_2)
v

= valuation(h,2)

for n in range(1l, v+1):

if r.is_square(): r = r.sqrt()

else: r = (-r).sqrt()



109

N = (r.norm()+1)/2
if N==0: return [0, -1, -1]

=)
Il

r.list()
(R[OJ+R[1]*(a_1/2)-1)/2

(@]
Il

Delta_L = squarefree_part(a_1"2-4*a_2)
if not Mod(Delta_L,4)==1: Delta_L = 4xDelta_L

roots = f.roots(QQbar, multiplicities=False)

a_in_QQbar = roots[0]

U = [squarefree_part(c), squarefree_part(c/Delta_L)]
res = [N]

for Delta_i in U:

if not Mod(Delta_i,4)==1: Delta_i = 4*Delta_i

if Delta>0 and Delta_ilabs(Delta_L)==0:
res.append([-1, Delta_i])

else:
C = CyclotomicField(abs(Delta_i))

M.<zeta> = K.composite_fields(C, preserve_embedding=True) [0]

K_roots_in_M = f.roots(M, multiplicities=False)
a_in_ M = K_roots_in_M[0]

b_in_M = K_roots_in_M[1]

phi = C.polynomial ()
C_roots_in_M = phi.roots(M, multiplicities=False)

zeta_in_ M = C_roots_in_M[O0]

phi_K = K.hom([a_in_M], M)
u = phi_K(r).sqrt()

for tau in elements_of_order2(M.galois_group()):
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if tau(a_in_M)==b_in_M and tau(zeta_in_M)==zeta_in M~(-1):
res.append([(u*tau(u)+1)/2, Delta_il)
break

return res
Q_booleans(1,-1)

[(3]: [0, -1, -1]

We see that Q booleans returns Q@ = 0 for the Fibonacci sequence. Indeed, recall
that v = —¢? and h = 2. If we switch to —v, we find

oL(v=7) =or(¢) =1-¢,

which is not equal to ¢'. This matches the output.
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Appendix

In the first two appendices, we provide numerical evidence of the closed-form formulas
proved in Chapters 4 and 5. We display the SageMath [35] programs used for our compu-
tations, all are written using SageMath 9.0.

In Appendix A.3, we provides reference tables that summarise which of the main the-
orems of Chapter 4 apply in each case. They serve as guides to identify the appropriate

closed-form formula for the density under the given conditions.

A.1 Numerical data in the function field case

In this section, we demonstrate Theorems 4.12 and the many theorems for the closed-
form formula of ¢, (7,d), through SageMath experimentations. We start by presenting the
SageMath programs used. We first define the setting.

q=9
F.<a> = GF(q)
A.<T> = F[]

With the Lucas program, we compute the n-th term of the Lucas sequence U(ay, az),

where a1, as € A, using the companion matrix method.

def Lucas(a_1,a_2,n):
if n<2: return n
M = matrix([[0,1],[-a_2,a_1]])
return (M~n) [0,1]

The next two programs are preliminaries to the main program. The first function,
irreducible polynomials, returns the Python generator that yields monic and irre-
ducible polynomials of degree n over F,. The second, num _irred _polynomials, returns

the number of such polynomials.
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[3]: def irreducible_polynomials(n):

T_powers = [T"i for i in range(O,n)]

irreds_1 [T+i for i in F]
if n==1:

for p in irreds_1: yield p

irreds_2 = [T"2+i for i in A.polynomials(max_degree=1) if (T~2+i).

—is_irreducible()]

if n==2:

for p in irreds_2: yield p

for coeffs in cartesian_product ([F]#*n):
f=Tn
for i in range(n):

f+=coeffs[i]*T_powers[i]

if any(flg==0 for g in irreds_l+irreds_2):

continue

if f.is_irreducible():
yield £

def num_irred_polynomials(n):

return sum(moebius(d)*q~(n//d) for d in divisors(n))//n

The function lucas rank mod takes as an input two non-zero polynomials a1, a2 € A
such that U(aq,a2) is non-degenerate (see Lemma 2.2), a positive integer d, and a prime
polynomial P. The program returns the boolean [d | pyy(P)] and ep, where the latter was

defined in Lemma 2.5.

[4]: def lucas_rank mod(a_1,a_2,d,p):
p_degree = p.degree()
Delta = a_172-4%a_2
f = Mod(q,d) .multiplicative_order()

if Delta.mod(p)==0: return [False,O0]
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if p_degree’.f not in [0,f/2]: return [False,0]

R = F['T'].quotient(p, 'x")
= R.gen()
B.<y> = R[]

epsilon_p = -1
if F.characteristic()!=2:
norm, var = R(1), R(Delta)
for i in range(p_degree):
normk=var
var = varx*q
if F(norm.1lift())**((q-1)//2)==1: epsilon_p = 1
elif not B(y~2-a_l*y+a_2).is_irreducible(): epsilon_p = 1

N = g"p_degree - epsilon_p

a_1_mod = R(a_1)
a_2_mod = R(a_2)
rank = 1

for n in divisors(N):
if Lucas(a_1_mod,a_2_mod,n)==0:
rank = n
break

return [rank’d==0,epsilon_p]
lucas_rank_mod(T,-1,2,T+1)

[4]: [True, 1]

Here, using the Fibonacci polynomial U(T, —1) as an example, we find that P =T 41
has rank py(P) divisible by 2 and ep = 1. The first 5 terms of the sequences are

0,1, T, T>+1, T3 —T.
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We see that P divides Uy = T — T, but none of the preceding terms. Hence py(P) = 4.
Now, since we are in odd characteristic, we have ep is equal to the Legendre symbol (A/P),
where A = T2 + 1. We have

<;AD> = AWP=D2 = (1) =1 (mod P),

so that ep = 1. Therefore, we see that lucas rank mod returns the right values.
Our final program is called d3 densities. Given aj,as € A such that U(aq,a2) is

non-degenerate and integers d, N > 1, the function returns the values of
77 d ’I’l ’Y, d n
N Z oy N Z Py

where ~ is the quotient of the root of the characteristic polynomial of the Lucas sequence.
Note that experimentations with d3 densities can be slow and tedious due to the expo-

nential growth of the number of irreducible polynomials of degree n over [y,

def d3_densities(a_1,a_2,d,N):
if Mod(d,F.characteristic())==0: return 0

res_plus = 0

res_minus = 0

L = [num_irred_polynomials(n) for n in range(1l,N+1)]

Mod(q,d) .multiplicative_order ()

if Mod(f,2)==0 and (q~(£//2)+1)%d==0 and gcd(d,q-1)<3:
= £//2

for n in range(f,N+1,f):

nb = 0

for 1 in irreducible_polynomials(n):
u, v = lucas_rank mod(a_1,a_2,d,1)
if v==1:

res_plus+=u/L[n-1]
else:

res_minus+=u/L[n-1]
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return [res_plus+*1./N, res_minusx1./N]
%time d3_densities(T,-1,2,4)

CPU times: user 23 s, sys: 35.5 ms, total: 23 s
Wall time: 23 s

[0.405478395061728, 0.000000000000000]

In the above example, we find some approximated values of dg (v,2) and & (7, 2) for
the sequence of Fibonacci polynomials over Fg. Since ag = —1 is a square in Fyg, we see
that dg (2) = 0 by Theorem 4.2, which matches the computation. Next, in Section 4.6, we
saw that h = 2, v is a square, and Q = 0. Hence, we apply Theorem 4.12 and find

5q (7,2) = % = 0.416.

This matches the computation as well.

In what follows, we use tables to compare the values of 0 (v,d) and &, (v,d) with
experimental values obtained via our SageMath computations. The numerical and experi-
mental values respectively appear in the “num.” and “exp.” columns. Since the number of
polynomials of degree n is asymptotically equivalent to ¢" /n, we restrict ourselves to small
values of ¢q. For each ¢, we are able to go up to a certain degree N, which is indicated
below the tables.

More information about the sequences tested can be found after their table. For in-
stance, the value of h, b(h), and Q. When it is needed, they are computed using the

programs in Section 4.6.

5;(7, d) num. exp. 64 (7, d) num. exp. dq(7, d)

1/3 0.333333 0.319328 0 0.000000 0.000000 1/3
11/64  0.171875 0.167273 3/32 0.093750 0.098611  17/64
21 77/1152 0.066840 0.063565 77/1152 0.066840 0.066666 77/576

d
2 5/12 0.416666 0.374341 1/4 0.251989 0.251989 2/3
4
6

Table A.1: The sequence U(T,T) with ¢ =5

The sequence U(T,T), with ¢ = 5, comes with the constants: h =1, b(h) =0, Q =1,

and there is no need to switch to —y. Computations are done up to degree N = 6.
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d (5; (7,d) num. exp. 0q (v,d) num. exp. dq(7,d)
2 1/6 0.166666 0.141057 1/4 0.250000 0.236111 5/12
4 1/12 0.083333 0.075388 0 0.000000  0.000000 1/12
10 25/288 0.086805 0.082029 0 0.000000 0.000000 25/288
14 7/144  0.048611 0.044042 7/96 0.072916 0.077380 35/288

Table A.2: The sequence U(T + 1,T%) with ¢ = 3

The sequence U(T 4 1,T%), with ¢ = 3, comes with: h = 4, b(h) =0, Q = 0, and there

is no need to switch to —y. Computations are done up to degree N = 12.

d 5;' (7,d) num. exp. 0q (v,d) num. exp. dq(7, d)
3 1/16 0.062500 0.055638 1/16 0.062500 0.078869 1/8

) 5/48 0.104166 0.094444 5/48 0.104166 0.161616 5/24
7 7/48 0.145833 0.150238 0 0.000000  0.000000 7/48
15 5/192  0.026041 0.022636 0 0.000000 0.000000 5/192

Table A.3: The sequence U(T + 1,T3) with ¢ = 2

The sequence U(T +1,T?), with ¢ = 2, comes with: h = 3, b(h) =0, Q = 1, and there

is no need to switch to —y. Computations are done up to degree N = 12.

d 53‘(7, d) num. exp. 8q (7,d) num. exp. dq(7,d)
2 11/24  0.458333 0.444530 1/4 0.250000 0.261904 17/24
4 5/24 0.208333 0.191125 1/4 0.250000 0.261904 11/24
6 23/64 0.359375 0.342146 0 0.000000 0.000000  23/64
8 1/6 0.166666 0.136218 1/4 0.250000 0.261904  5/12

Table A.4: The sequence U(T, —1) with ¢ =7

The sequence U(T,—1), with ¢ = 7, comes with: h = 2, b(h) = 0, @ = 0 and we

should switch to —v. Computations are done up to degree N = 6.
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d 5;(7, d) num. exp. g (v,d) num. exp. dq(7,d)
2 11/24  0.458333 0.455626 1/4 0.250000 0.233333 17/24
4 5/12 0.416666 0.411543 0 0.000000  0.000000 5/24
14 77/1152  0.066840 0.052906 7/96 0.072916 0.708333 161/1152
18 5/96 0.052083 0.040310 1/16 0.062500 0.062500 11/96

Table A.5: The sequence U(T,3(T> + T2 + 1)?) with ¢ = 5

The sequence U(T,3(T2 + T? 4 1)?), with ¢ = 5, comes with: h = 2, b(h) = 1, and

there is no need to switch to —y. Computations are done up to degree N = 6.

d 5;(7, d) num. exp. 64 (7, d) num. exp. dq(7,d)
2 11/24  0.458333 0.415671 1/4 0.250000 0.270645 17/24
13 13/112 0.116071 0.076666 13/112 0.116071 0.177519 13/56
14 77/1152  0.066840 0.054069 0 0.000000  0.000000 77/1152
18 5/96 0.052083  0.042054 0 0.000000 0.000000 5/96

Table A.6: The sequence U(37% —1,37% — 1) with ¢ =5

The sequence U(3T% —1,37% — 1), with ¢ = 5, comes with: h = 2, b(h) = 1, and there

is no need to switch to —y. Computations are done up to degree N = 6.

In Table A.6, some values do not seem to match. There are two main reasons. First,

for d = 13, we have f = 4. From Chapter 3, new contributions to 5;(7, 13) appear only at

degrees divisible by f. At N = 6, we are between two contributions and the approximation

weakens. Testing up to N = 8 gives 5;(% 13) = 0.432753, which is closer to the expected

value. The second reason is that we can not take IV large enough for a good approximation.

This is particularly the case for d = 18, for which we have f = 6, since we can not reach

the next contribution at N = 12. The same happens in Table A.5.

d 5;(7, d) num. exp. 64 (7, d) num. exp. dq(7,d)
3 3/8 0.375000 0.361327 3/8 0.375000 0.372023 3/4
) 5/24 0.208333 0.186318 0 0.000000 0.000000 5/24
7 7/48 0.145833 0.144969 0 0.000000 0.000000 7/48
9 1/8 0.125000 0.102017 1/8 0.125000 0.157738 1/4

Table A.7: The sequence U(T,T% + T3 + T?) with ¢ = 2



[1]:

[2]:

119

The sequence U(T,T% + T3 + T?), with ¢ = 2, comes with: h = 1, L = F4(T), and

there is no need to switch to —y. Computations are done up to degree N = 12.

d 6f(v,d)  num. exp. 6, (v,d)  num. exp. dq(7,d)

2 11/24  0.458333 0.472107 3/8 0.375000 0.368990 323/384
4 5/12 0.416666 0.441584 1/4 0.250000 0.258012 2/3

10 115/576 0.199652 0.204783 0 0.000000 0.000000 115/576
14 77/576  0.133680 0.098060 7/64 0.109375 0.093750 35/144

Table A.8: The sequence U(2T%,T* + (T 4+ 1)?) with ¢ = 3

The sequence U (272, T* + (T + 1)?), with ¢ = 3, comes with: h = 1, L = Fg(T), and

there is no need to switch to —y. Computations are done up to degree N = 8.

A.2 Numerical data in the classical case

In this section, we provide numerical evidence of Theorems 5.10, 5.12, 5.14, and 5.16. We
start by presenting the SageMath programs used.
Our first program computes the n-th term of the Lucas sequence U(aj, as) using the

companion matrix method.

def Lucas(a_1l,a_2,n):
if n<2: return n
M = matrix([[0,1],[-a_2,a_1]])
return (M~n) [0,1]

The program lucas rank mod takes as an input two non-zero integers aj,as € Z
such that U(a1,az) is non-degenerate (see Lemma 2.2), a positive integer d, and a prime
number p. The program returns the boolean [d | py(p)] and the legendre symbol (A/p),
where A = a% — 4as. Note that there is an exception for p = 2, for which we return 0
instead of the legendre symbol. This is important in the main program, as we choose to

ignore the even prime in our experimentations.
def lucas_rank_mod(a_1,a_2,d,p):

if p==2: return [a_2/%2!=0 and (2 + a_1%2)%d==0, 0]

Delta = a_172-4x*a_2
legendre = legendre_symbol(Delta,p)
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N = p - legendre
if N%d!=0 or a_2%p==0: return [False,0]

a_1_mod = Mod(a_1,p)
a_2_mod = Mod(a_2,p)

rank = 1
for n in divisors(N):
if Lucas(a_1_mod,a_2_mod,n)==0:
rank = n

break
return [rank),d==0, legendre]

lucas_rank_mod(1,-1,2,7)
[2]: [True, -1]

With inputs U (1, —1), d = 2, and p = 7, we obtain [True, —1] from lucas rank mod.
In other words, 2 divides py(7) = 8, and (A/7) = (5/7) = —1, which is valid.

[3]: def densities(a_1,a_2,d,x):
res_plus = 0

res_minus = 0

Delta = a_1"2-4*xa_2

Nb_of _primes = prime_pi(x)

for p in prime_range(3,x+1):
u, v = lucas_rank mod(a_1,a_2,d,p)
if v==1:

res_plus+=u

if v==-

res_minust+=u
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return [res_plus*1./Nb_of_primes, res_minus*1./Nb_of_primes]
%time densities(1,-1,2,1076)

CPU times: user 2min 19s, sys: 51.4 ms, total: 2min 19s
Wall time: 2min 19s

[0.416749471324110, 0.250019108767102]

In the example, we obtain an approximation of 67 (2) and 67 (2) for the Fibonacci
sequence U(1,—1). We may compute the density values. Note that v = —¢? and h = 2.
By Theorem 5.1, we have

5;“(2) = 5f7(4) + (53(1) — 5f7(2).
Since 51’7(1) is the density of primes that split completely in Q(v/5), we have 5f7(1) =1/2.
Next, one can verify that Q = 0, since (—’y)l/ 2 has norm —1. Thus, by Theorem 5.10,

5t (4) = %2 and &% (2) = é
It follows that 61 (2) = 5/12 = 0.416. The same method yields 67 (2) = 1/4 = 0.25. We see
that the density values match the experimentation. Other comparisons for the Fibonacci
sequence can be found in Table A.10.

In the following tables, we compare the values of 67 (d) and &7 (d) with experimental
values obtained via our SageMath computations. The numerical and experimental values
respectively appear in the “num.” and “exp.” columns. We test primes up to 10°.

More information about the sequences tested can be found below their table. For
instance, the value of h, Q, Ay, and various other constants that are defined in our main

theorems. They are computed using the programs in Section 5.4.
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d 5;r (d) num. exp. 65 (d) num. exp. 0 (d)
2 5/24 0.208333 0.207482  1/2  0.500000 0.500343 17/24
4 1/6 0.166666 0.166399 1/4  0.250000 0.250363 5/12
6 5/64 0.078125 0.078231 3/16 0.187500 0.187278 17/64
14 35/1152 0.030381 0.030268 7/96 0.072916 0.073084 119/1152
24 1/32 0.031250 0.031287 0 0.000000 0.000000 1/32
42 35/3072 0.011393 0.011325 7/256 0.027343 0.027669 119/3072

Table A.9: The sequence U (4,2)

The sequence U(4,2) of Table A.9 comes with: h =2, A,
need to switch v to —y. We apply Theorems 5.10 and 5.12.

=8 and Q = 0. There is no

d 5;r (d) num. exp. 45 (d) num. exp. d~(d)
2 5/12  0.416666 0.416749 1/4  0.250000 0.250019 2/3
4 1/12  0.083333 0.083021 1/4  0.250000 0.250019 1/3
6 5/32  0.156250 0.156462 3/32  0.093750 0.094002 1/4
10 25/144 0.173611 0.174373 0 0.000000 0.000000 25/144
20 5/144 0.034722 0.035083 0 0.000000 0.000000 5/144
30 25/384 0.065104 0.065619 0 0.000000 0.000000 25/384

Table A.10: The sequence U(1,—1)

The Fibonacci sequence U (1, —1) of Table A.10 comes with: h =2, Ap =5 and Q = 0.
Since as = —1, we should switch v to —v. We apply Theorems 5.10, 5.12, and 5.1.

d 5,'; (d) num. exp. oy (d) num. exp. d~(d)
2 1/6  0.166666 0.165774 1/2  0.500000 0.500471  2/3

4 1/12 0.083333 0.083021 1/4  0.250000 0.250019 1/3

6 1/48 0.020833 0.020662 3/48 0.062500 0.062332 1/12
10 5/72  0.069444 0.068995 0 0.000000  0.000000 5/72
18 1/144 0.006944 0.006879 3/144 0.020833 0.020892 1/36
30 5/576 0.008680 0.008713 0 0.000000 0.000000 5/576

Table A.11: The sequence U(10,5)
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The sequence U(10,5) of Table A.11 comes with: h =6, Ay =5 and Q = 0. There is

no need to switch v to —y. We apply Theorems 5.10 and 5.12.

d (Lj' (d) num. exp. 6, (d) num. exp. d+(d)
2 1/6  0.166666 0.166602 1/6  0.166666 0.167227 1/3
4 1/12 0.083333 0.083467 1/12 0.083333 0.083326 1/6
6 1/32 0.031250 0.031414 3/32 0.093750 0.093607  1/8
10 5/144 0.034722 0.035045 5/144 0.034722 0.034446 5/72
14 7/576 0.012152 0.011949 7/576 0.012152 0.012344 7/288
42 7/768 0.009114 0.009095 0 0.000000 0.000000 7/768

Table A.12: The sequence U(5,1)

The sequence U(5, 1) of Table A.12 comes with the constants: h =2, Ap =21, Q =1,
01 =0, A1 =12, Q2 =1, and As = 28. There is no need to switch v to —v. We apply
Theorems 5.14 and 5.16.

d 5$(d) num. exp. 65 (d) num. exp. d(d)
2 1/3 0.333333 0.332632 1/3  0.333333 0.334135 2/3
4 1/6 0.166666 0.166488 1/6  0.166666 0.167392 1/3
6 1/16 0.062500 0.062574 3/16 0.187500 0.187151 1/4
12 1/32 0.031250 0.031746 3/32  0.093750 0.094040 1/8
26 13/252  0.051587 0.051529 0 0.000000 0.000000 13/252
78 13/1344 0.009672 0.009554 0 0.000000 0.000000 13/1344

Table A.13: The sequence U(1, —3)

The sequence U (1, —3) of Table A.13 comes with the constants: h =1, Ap, =13, Q =1,
Q1 =0, A1 =-3, Qs =0, and Ay = —39. Note that Qs = 0 since the automorphism o9
itself does not exist. This is because Ap | Ay. There is no need to switch v to —y. We
apply Theorems 5.14 and 5.16.
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d 5;r (d) num. exp. 6, (d) num. exp. d(d)

2 1/12 0.083333 0.082881 1/12 0.083333 0.083607 1/6
4 1/24 0.041666  0.041466 1/24 0.041666 0.042077 1/12
6 1/64 0.015625 0.015363 1/64 0.015625 0.015694  1/32
10 5/576  0.008680 0.008611  5/576  0.008680 0.008790 5/288
22 11/1440 0.007638 0.007783 11/1440 0.007638 0.007732 11/720
30  5/768  0.006510 0.006675 5/768  0.006510 0.006573 5/384

Table A.14: The sequence U(7,16)

The sequence U(7,16) of Table A.14 comes with the constants: h = 4, Ay = —15,
Q=101 =1, A1 =-24, Qs =1, and As = —40. There is no need to switch v to —v.
We apply Theorems 5.14 and 5.16.

A.3 Reference tables of density formulas

In this appendix, we display three tables that helps find the right theorem in order to
compute a closed-form formula of 5; (7,d) and 6, (v,d). Each table represents, in order,
one of the three assumptions: ¢ = 1 (mod 4), 2 | ¢, and ¢ = 3 (mod 4). Note that we
do not mention the possible switch between v and —+ in the tables. If there is a need to
switch, then one should use Theorem 4.1 first, and then our tables.

In each cell, we either reference the theorem to use or, in trivial cases, we write the
density values directly. If the mention n/a appears, then the case in question does not
happen. We consider four columns, the first being for 5; (7,d). The next three columns
deal with 6, (v,d) in the cases 2 | f and (d,q—1) < 2, d = 2, and otherwise. We use “o/w”
as an abbreviation for “otherwise”.

Throughout this section, we assume that L/K is a degree-two extension. If L = K,
then R, (7,d) is empty and the density of 5;(’)/,61) is obtained via Theorem 4.12. In
addition, we also assume d | ¢" +1 for some k > 1 in the three columns that consider the

case of R (v,d), as it is empty otherwise.
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g (7, d) d=2 2| fand (d,g—1) <2 | o/w
b(h) =0 || Theorem 4.12 | Corollary 3.26 Theorem 4.19 0
b(h) =1 Theorem 4.28 | Corollary 3.26 Theorem 4.33 0
L =TF;(T) || Theorem 4.38 | Corollary 3.26 Theorem 4.44 0
Table A.15: The case ¢ =1 (mod 4)
+ —
64 (7,d) d=21|2]|fand (dyg—1)<2 | o/w
b(h) =0 || Theorem 4.12 0 Theorem 4.19 0
b(h) =1 n/a n/a n/a n/a
L =Fg;(T) || Theorem 4.38 0 Theorem 4.44 0
Table A.16: The case 2 | ¢
+ —
6, (7, d) d=2 2| fand (dyg—1) <2 | o/w
b(h) =0 Theorem 4.12 | Theorem 4.21 Theorem 4.19 0
b(h) =1 n/a n/a n/a n/a
L =TFg;(T) || Theorem 4.38 | Theorem 4.40 Theorem 4.44 0

Table A.17: The case ¢ = 3 (mod 4)
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